Dans l'apprentissage automatique, les méthodes d'ensemble combinent plusieurs algorithmes pour effectuer une prédiction. L'ensachage, la suralimentation et l'empilage en sont quelques exemples.
J'essaie de concevoir une technique de factorisation matricielle pour un élément utilisateur simple, un système de recommandation de notes. J'ai 2 questions à ce sujet. Tout d'abord dans une implémentation simple que j'ai vue de la technique de factorisation matricielle pour la recommandation de film, l'auteur vient d'initialiser les dimensions …
Les algorithmes de stimulation, tels que AdaBoost , combinent plusieurs classificateurs «faibles» pour former un seul classificateur plus fort. Bien qu'en théorie, le renforcement devrait être possible avec n'importe quel classificateur de base, en pratique, il semble que les classificateurs basés sur des arbres soient les plus courants. Pourquoi est-ce? …
Comment un classificateur d'ensemble fusionne-t-il les prédictions de ses classificateurs constituants? J'ai du mal à trouver une description claire. Dans certains exemples de code que j'ai trouvés, l'ensemble fait simplement la moyenne des prédictions, mais je ne vois pas comment cela pourrait rendre possible une "meilleure" précision globale. Considérez le …
We use cookies and other tracking technologies to improve your browsing experience on our website,
to show you personalized content and targeted ads, to analyze our website traffic,
and to understand where our visitors are coming from.
By continuing, you consent to our use of cookies and other tracking technologies and
affirm you're at least 16 years old or have consent from a parent or guardian.