Questions marquées «cross-entropy»

5
Quelle fonction de perte pour les tâches de classification multi-classes, multi-étiquettes dans les réseaux de neurones?
J'entraîne un réseau de neurones pour classer un ensemble d'objets dans n-classes. Chaque objet peut appartenir à plusieurs classes à la fois (multi-classes, multi-étiquettes). J'ai lu que pour les problèmes multi-classes, il est généralement recommandé d'utiliser une entropie croisée catégorique et softmax comme fonction de perte au lieu de mse …

6
Propagation du dos avec Softmax / Entropie croisée
J'essaie de comprendre comment fonctionne la rétropropagation pour une couche de sortie softmax / entropie croisée. La fonction d'erreur d'entropie croisée est E(t,o)=−∑jtjlogojE(t,o)=−∑jtjlog⁡ojE(t,o)=-\sum_j t_j \log o_j avec et comme cible et sortie au neurone , respectivement. La somme est sur chaque neurone dans la couche de sortie. lui-même est le …

1
Pourquoi utilisons-nous la divergence de Kullback-Leibler plutôt que l'entropie croisée dans la fonction objectif t-SNE?
Dans mon esprit, la divergence de KL entre la distribution de l'échantillon et la distribution vraie est simplement la différence entre l'entropie croisée et l'entropie. Pourquoi utilisons-nous l'entropie croisée comme fonction de coût dans de nombreux modèles d'apprentissage automatique, alors que nous utilisons la divergence de Kullback-Leibler dans t-sne? Y …

3
Apprentissage automatique: devrais-je utiliser une perte d'entropie croisée ou d'entropie croisée binaire pour les prédictions binaires?
Tout d'abord, j'ai réalisé que si je devais effectuer des prédictions binaires, je devais créer au moins deux classes en effectuant un encodage à chaud. Est-ce correct? Cependant, l'entropie croisée binaire est-elle réservée aux prédictions avec une seule classe? Si je devais utiliser une perte catégorique d'entropie croisée que l'on …

2
Pourquoi l'erreur quadratique moyenne est-elle l'entropie croisée entre la distribution empirique et un modèle gaussien?
Dans 5.5, Deep Learning (par Ian Goodfellow, Yoshua Bengio et Aaron Courville), il déclare que Toute perte constituée d'une log-vraisemblance négative est une entropie croisée entre la distribution empirique définie par l'ensemble d'apprentissage et la distribution de probabilité définie par le modèle. Par exemple, l'erreur quadratique moyenne est l'entropie croisée …


3
Quelle est la différence entre l'entropie croisée et la divergence KL?
L'entropie croisée et la divergence KL sont des outils pour mesurer la distance entre deux distributions de probabilité. Quelle est la différence? De plus, la minimisation de KL est équivalente à la minimisation de l'entropie croisée.H(P,Q)=−∑xP(x)logQ(x)H(P,Q)=−∑xP(x)log⁡Q(x) H(P,Q) = -\sum_x P(x)\log Q(x) KL(P|Q)=∑xP(x)logP(x)Q(x)KL(P|Q)=∑xP(x)log⁡P(x)Q(x) KL(P | Q) = \sum_{x} P(x)\log {\frac{P(x)}{Q(x)}} Je …



2
Différentes définitions de la fonction de perte d'entropie croisée
J'ai commencé à en apprendre davantage sur les réseaux de neurones avec le didacticiel neuromnetworksanddeeplearning dot com. En particulier dans le 3ème chapitre, il y a une section sur la fonction d'entropie croisée, et définit la perte d'entropie croisée comme: C=−1n∑x∑j(yjlnaLj+(1−yj)ln(1−aLj))C=−1n∑x∑j(yjln⁡ajL+(1−yj)ln⁡(1−ajL))C = -\frac{1}{n} \sum\limits_x \sum\limits_j (y_j \ln a^L_j + (1-y_j) …



En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.