Quant à votre première question, il faut définir "standard", ou reconnaître qu'un "modèle canonique" s'est progressivement mis en place. Comme un commentaire l'a indiqué, il semble au moins que la façon dont vous utilisez IRWLS est plutôt standard.
Quant à votre deuxième question, la "cartographie des contractions en probabilité" pourrait être liée (de manière informelle) à la convergence des "algorithmes stochastiques récursifs". D'après ce que j'ai lu, il existe une énorme littérature sur le sujet, principalement en génie. En économie, nous en utilisons un tout petit peu, en particulier les travaux fondateurs de Lennart Ljung - le premier article était Ljung (1977) - qui a montré que la convergence (ou non) d'un algorithme stochastique récursif peut être déterminée par la stabilité (ou pas) d'une équation différentielle ordinaire connexe.
(ce qui suit a été retravaillé après une discussion fructueuse avec le PO dans les commentaires)
Convergence
Je vais utiliser comme référence Saber Elaydi "An Introduction to Difference Equations", 2005, 3d ed.
L'analyse est conditionnelle à un certain échantillon de données donné, de sorte que les sont traités comme fixe. x′s
La condition de premier ordre pour la minimisation de la fonction objectif, considérée comme une fonction récursive en ,
m ( k + 1 ) = N ∑ i = 1 v i [ m ( k ) ] x i ,m
m(k+1)=∑i=1Nvi[m(k)]xi,vi[m(k)]≡wi[m(k)]∑Ni=1wi[m(k)][1]
a un point fixe (l'argmin de la fonction objectif). Par le théorème 1,13 pp 27-28 d'Elaydi, si la dérivée première par rapport à de la RHS de [ 1 ] , évaluée au point fixe m ∗ , notons-la A ′ ( m ∗ ) , est plus petite que l'unité en valeur absolue , alors m ∗ est asymptotiquement stable (AS). De plus, par le théorème 4.3 p.179, nous avons que cela implique également que le point fixe est uniformément AS (UAS).
"Asymptotiquement stable" signifie que pour une certaine plage de valeurs autour du point fixe, un voisinage ( m ±m[1]m∗A′(m∗)m∗
(m∗±γ), not necessarily small in size, the fixed point is attractive , and so if the algorithm gives values in this neighborhood, it will converge. The property being "uniform", means that the boundary of this neighborhood, and hence its size, is independent of the initial value of the algorithm. The fixed point becomes globally UAS, if γ=∞.
So in our case, if we prove that
|A′(m∗)|≡∣∣∣∣∑i=1N∂vi(m∗)∂mxi∣∣∣∣<1[2]
we have proven the UAS property, but without global convergence. Then we can either try to establish that the neighborhood of attraction is in fact the whole extended real numbers, or, that the specific starting value the OP uses as mentioned in the comments (and it is standard in IRLS methodology), i.e. the sample mean of the x's, x¯, always belongs to the neighborhood of attraction of the fixed point.
We calculate the derivative
∂vi(m∗)∂m=∂wi(m∗)∂m∑Ni=1wi(m∗)−wi(m∗)∑Ni=1∂wi(m∗)∂m(∑Ni=1wi(m∗))2
=1∑Ni=1wi(m∗)⋅[∂wi(m∗)∂m−vi(m∗)∑i=1N∂wi(m∗)∂m]
Then
A′(m∗)=1∑Ni=1wi(m∗)⋅[∑i=1N∂wi(m∗)∂mxi−(∑i=1N∂wi(m∗)∂m)∑i=1Nvi(m∗)xi]
=1∑Ni=1wi(m∗)⋅[∑i=1N∂wi(m∗)∂mxi−(∑i=1N∂wi(m∗)∂m)m∗]
and
|A′(m∗)|<1⇒∣∣∣∣∑i=1N∂wi(m∗)∂m(xi−m∗)∣∣∣∣<∣∣∣∣∑i=1Nwi(m∗)∣∣∣∣[3]
we have
∂wi(m∗)∂m=−ρ′′(|xi−m∗|)⋅xi−m∗|xi−m∗||xi−m∗|+xi−m∗|xi−m∗|ρ′(|xi−m∗|)|xi−m∗|2=xi−m∗|xi−m∗|3ρ′(|xi−m∗|)−ρ′′(|xi−m∗|)⋅xi−m∗|xi−m∗|2=xi−m∗|xi−m∗|2⋅[ρ′(|xi−m∗|)|xi−m∗|−ρ′′(|xi−m∗|)]=xi−m∗|xi−m∗|2⋅[wi(m∗)−ρ′′(|xi−m∗|)]
Inserting this into [3] we have
∣∣∣∣∑i=1Nxi−m∗|xi−m∗|2⋅[wi(m∗)−ρ′′(|xi−m∗|)](xi−m∗)∣∣∣∣<∣∣∣∣∑i=1Nwi(m∗)∣∣∣∣
⇒∣∣∣∣∑i=1Nwi(m∗)−∑i=1Nρ′′(|xi−m∗|)∣∣∣∣<∣∣∣∣∑i=1Nwi(m∗)∣∣∣∣[4]
This is the condition that must be satisfied for the fixed point to be UAS. Since in our case the penalty function is convex, the sums involved are positive. So condition [4] is equivalent to
∑i=1Nρ′′(|xi−m∗|)<2∑i=1Nwi(m∗)[5]
If ρ(|xi−m|) is Hubert's loss function, then we have a quadratic (q) and a linear (l) branch,
ρ(|xi−m|)=⎧⎩⎨(1/2)|xi−m|2|xi−m|≤δδ(|xi−m|−δ/2)|xi−m|>δ
and
ρ′(|xi−m|)={|xi−m||xi−m|≤δδ|xi−m|>δ
ρ′′(|xi−m|)={1|xi−m|≤δ0|xi−m|>δ
⎧⎩⎨⎪⎪wi,q(m)=1|xi−m|≤δwi,l(m)=δ|xi−m|<1|xi−m|>δ
Since we do not know how many of the |xi−m∗|'s place us in the quadratic branch and how many in the linear, we decompose condition [5] as (Nq+Nl=N)
∑i=1Nqρ′′q+∑i=1Nlρ′′l<2[∑i=1Nqwi,q+∑i=1Nlwi,l]
⇒Nq+0<2[Nq+∑i=1Nlwi,l]⇒0<Nq+2∑i=1Nlwi,l
which holds. So for the Huber loss function the fixed point of the algorithm is uniformly asymptotically stable, irrespective of the x's. We note that the first derivative is smaller than unity in absolute value for any m, not just the fixed point.
What we should do now is either prove that the UAS property is also global, or that, if m(0)=x¯ then m(0) belongs to the neighborhood of attraction of m∗.