Expression de forme fermée pour les quantiles de


16

J'ai deux variables aléatoires, αiiid U(0,1),i=1,2U(0,1) est la distribution uniforme de 0-1.

Ensuite, cela donne un processus, disons:

P(x)=α1sin(x)+α2cos(x),x(0,2π)

Maintenant, je me demandais s'il y avait une expression de forme fermée pour F1(P(x);0.75) le quantile théorique à 75% de P(x) pour un x(0,2π) donné - je suppose que i peut le faire avec un ordinateur et de nombreuses réalisations de P(x) , mais je préfère la forme fermée.


1
Je pense que vous voulez supposer que α 1 et α 2 sont statistiquement indépendants. 12
Michael R. Chernick

@Procrastinator: pouvez-vous écrire ceci comme réponse?
user603

4
(+1) Le point de vue du "processus" semble être un peu un hareng rouge ici. Écris β i = α i - 1 / 2 ~ U ( - 1 / 2 , 1 / 2 ) . Ensuite, pour chaque x fixe, les deux premiers termes déterminent unefonction de densitétrapézoïdaleet le dernier terme n'est qu'un décalage moyen. Pour la détermination de la densité trapézoïdale, il suffit de considérer x [ 0 , π / 2 ) .
P(x)=β1sinx+β2cosx+12(sinx+cosx),
βi=αi1/2U(1/2,1/2)xx[0,π/2)
cardinal

2
Numériquement, cela peut être fait simplement en utilisant quant = function(n,p,x) return( quantile(runif(n)*sin(x)+runif(n)*cos(x),p) )et quant(100000,0.75,1).

Réponses:


19

Ce problème peut être rapidement réduit à celui de trouver le quantile d'une distribution trapézoïdale .

Réécrivons le processus comme U 1 et U 2 sont iid U ( - 1 , 1 ) variables aléatoires; et, par symétrie, cela a la mêmedistributionmarginaleque le processus ¯ P ( x ) = U 1| 1

P(x)=U112sinx+U212cosx+12(sinx+cosx),
U1U2U(1,1)
P¯(x)=U1|12sinx|+U2|12cosx|+12(sinx+cosx).
The first two terms determine a symmetric trapezoidal density since this is the sum of two mean-zero uniform random variables (with, in general, different half-widths). The last term just results in a translate of this density and the quantile is equivariant with respect to this translate (i.e., the quantile of the shifted distribution is the shifted quantile of the centered distribution).

Quantiles of a trapezoidal distribution

Y=X1+X2X1X2U(a,a) and U(b,b) distributions. Assume without loss of generality that ab. Then, the density of Y is formed by convolving the densities of X1 and X2. This is readily seen to be a trapezoid with vertices (ab,0)(a+b,1/2a)(ab,1/2a) and (a+b,0).

The quantile of the distribution of Y, for any p<1/2 is, thus,

q(p):=q(p;a,b)={8abp(a+b),p<b/2a(2p1)a,b/2ap1/2.
By symmetry, for p>1/2, we have q(p)=q(1p).

Back to the case at hand

The above already provides enough to give a closed-form expression. All we need is to break into two cases |sinx||cosx| and |sinx|<|cosx| to determine which plays the role of 2a and which plays the role of 2b above. (The factor of 2 here is only to compensate for the divisions by two in the definition of P¯(x).)

For p<1/2, on |sinx||cosx|, we set a=|sinx|/2 and b=|cosx|/2 and get

qx(p)=q(p;a,b)+12(sinx+cosx),
and on |sinx|<|cosx| the roles reverse. Similarly, for p1/2
qx(p)=q(1p;a,b)+12(sinx+cosx),

The quantiles

Below are two heatmaps. The first shows the quantiles of the distribution of P(x) for a grid of x running from 0 to 2π. The y-coordinate gives the probability p associated with each quantile. The colors indicate the value of the quantile with dark red indicating very large (positive) values and dark blue indicating large negative values. Thus each vertical strip is a (marginal) quantile plot associated with P(x).

Quantiles as a function of x

The second heatmap below shows the quantiles themselves, colored by the corresponding probability. For example, dark red corresponds to p=1/2 and dark blue corresponds to p=0 and p=1. Cyan is roughly p=1/4 and p=3/4. This more clearly shows the support of each distribution and the shape.

Quantile plot

Some sample R code

The function qproc below calculates the quantile function of P(x) for a given x. It uses the more general qtrap to generate the quantiles.

# Pointwise quantiles of a random process: 
# P(x) = a_1 sin(x) + a_2 cos(x)

# Trapezoidal distribution quantile
# Assumes X = U + V where U~Uni(-a,a), V~Uni(-b,b) and a >= b
qtrap <- function(p, a, b)
{
    if( a < b) stop("I need a >= b.")
    s <- 2*(p<=1/2) - 1
    p <- ifelse(p<= 1/2, p, 1-p)
    s * ifelse( p < b/2/a, sqrt(8*a*b*p)-a-b, (2*p-1)*a )
}

# Now, here is the process's quantile function.
qproc <- function(p, x)
{
    s <- abs(sin(x))
    c <- abs(cos(x))
    a <- ifelse(s>c, s, c)
    b <- ifelse(s<c, s, c)
    qtrap(p,a/2, b/2) + 0.5*(sin(x)+cos(x))
} 

Below is a test with the corresponding output.

# Test case
set.seed(17)
n <- 1e4
x <- -pi/8
r <- runif(n) * sin(x) + runif(n) * cos(x)

# Sample quantiles, then actual.
> round(quantile(r,(0:10)/10),3)
    0%    10%    20%    30%    40%    50%    60%    70%    80%    90%   100%
-0.380 -0.111 -0.002  0.093  0.186  0.275  0.365  0.453  0.550  0.659  0.917
> round(qproc((0:10)/10, x),3)
 [1] -0.383 -0.117 -0.007  0.086  0.178  0.271  0.363  0.455  0.548
[10]  0.658  0.924

3
I wish i could upvote more. This is the reason i love this website: the power of specialization. i didn't know of the trapezoid distribution. It would have taken me some time to figure this out. Or I would have had to settle for using Gaussians instead of Uniforms. Anyhow, it's awesome.
user603
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.