Quelles sont les principales différences entre les données rares et les données manquantes? Et comment cela influence-t-il l'apprentissage automatique? Plus précisément, quel effet les données éparses et les données manquantes ont-elles sur les algorithmes de classification et le type d'algorithmes de régression (prédiction des nombres). Je parle d'une situation où le pourcentage de données manquantes est important et nous ne pouvons pas supprimer les lignes contenant des données manquantes.