Keras: pourquoi la perte diminue-t-elle alors que val_loss augmente?


12

J'ai configuré une recherche de grille pour un tas de paramètres. J'essaie de trouver les meilleurs paramètres pour un réseau neuronal Keras qui effectue une classification binaire. La sortie est soit un 1 soit un 0. Il y a environ 200 fonctionnalités. Quand j'ai fait une recherche dans la grille, j'ai reçu un tas de modèles et leurs paramètres. Le meilleur modèle avait ces paramètres:

Epochs           : 20
Batch Size       : 10
First Activation : sigmoid
Learning Rate    : 1
First Init       : uniform

et les résultats pour ce modèle étaient:

        loss       acc  val_loss   val_acc
1   0.477424  0.768542  0.719960  0.722550
2   0.444588  0.788861  0.708650  0.732130
3   0.435809  0.794336  0.695768  0.732682
4   0.427056  0.798784  0.684516  0.721137
5   0.420828  0.803048  0.703748  0.720707
6   0.418129  0.806206  0.730803  0.723717
7   0.417522  0.805206  0.778434  0.721936
8   0.415197  0.807549  0.802040  0.733849
9   0.412922  0.808865  0.823036  0.731761
10  0.410463  0.810654  0.839087  0.730410
11  0.407369  0.813892  0.831844  0.725252
12  0.404436  0.815760  0.835217  0.723102
13  0.401728  0.816287  0.845178  0.722488
14  0.399623  0.816471  0.842231  0.717514
15  0.395746  0.819498  0.847118  0.719541
16  0.393361  0.820366  0.858291  0.714873
17  0.390947  0.822025  0.850880  0.723348
18  0.388478  0.823341  0.858591  0.721014
19  0.387062  0.822735  0.862971  0.721936
20  0.383744  0.825762  0.880477  0.721322

J'ai donc réanimé ce modèle avec plus d'époques (150 d'entre elles) et ce sont les résultats que j'ai obtenus. Je ne sais pas pourquoi cela se produit, est-ce normal ou qu'est-ce que je fais mal?

Tracé de la perte, acc, val_locc et val_acc

         loss       acc  val_loss   val_acc
1    0.476387  0.769279  0.728492  0.722550
2    0.442604  0.789941  0.701136  0.730472
3    0.431936  0.796915  0.676995  0.723655
4    0.426349  0.800258  0.728562  0.721997
5    0.421143  0.803653  0.739789  0.716900
6    0.416389  0.807575  0.720850  0.711373
7    0.413163  0.809154  0.751340  0.718128
8    0.409013  0.811418  0.780856  0.723409
9    0.405871  0.813576  0.789046  0.719295
10   0.402579  0.815524  0.804526  0.720278
11   0.400152  0.816813  0.811905  0.719541
12   0.400304  0.817261  0.787449  0.713154
13   0.397917  0.817945  0.804222  0.721567
14   0.395266  0.819524  0.801722  0.723348
15   0.393957  0.820156  0.793889  0.719049
16   0.391780  0.821103  0.794179  0.721199
17   0.390206  0.822393  0.806803  0.722611
18   0.388075  0.823604  0.817850  0.723901
19   0.385985  0.824762  0.841883  0.722058
20   0.383762  0.826867  0.857071  0.720830
21   0.381493  0.827947  0.864432  0.718005
22   0.379520  0.829210  0.872835  0.720400
23   0.377488  0.830526  0.879962  0.721383
24   0.375619  0.830736  0.887850  0.723839
25   0.373684  0.832000  0.891267  0.724822
26   0.372023  0.832368  0.891562  0.724638
27   0.370155  0.833184  0.892528  0.724883
28   0.368511  0.834684  0.887061  0.724699
29   0.366522  0.835606  0.883541  0.724883
30   0.364500  0.836422  0.882823  0.724515
31   0.362612  0.836737  0.882611  0.722427
32   0.360742  0.837448  0.884282  0.720769
33   0.359093  0.838738  0.884339  0.719418
34   0.357436  0.839080  0.888006  0.716470
35   0.355723  0.840633  0.892658  0.713830
36   0.354305  0.840764  0.897303  0.710575
37   0.352758  0.841343  0.901147  0.709408
38   0.351414  0.842054  0.899546  0.707934
39   0.349619  0.843370  0.905133  0.704864
40   0.347993  0.844475  0.910400  0.701363
41   0.346402  0.845581  0.915086  0.699337
42   0.345014  0.845818  0.918697  0.697617
43   0.343708  0.846607  0.923413  0.695652
44   0.342335  0.847292  0.930816  0.693441
45   0.340745  0.848081  0.940737  0.689020
46   0.339623  0.848713  0.948633  0.685274
47   0.338846  0.849845  0.952492  0.683923
48   0.337724  0.850134  0.961147  0.683984
49   0.336247  0.850976  0.967792  0.683309
50   0.334444  0.851529  0.984107  0.680238
51   0.333086  0.852029  1.001179  0.678273
52   0.331756  0.853240  1.016130  0.674589
53   0.330738  0.854003  1.024875  0.673606
54   0.329548  0.854030  1.040597  0.670044
55   0.328813  0.855372  1.041871  0.668509
56   0.327120  0.855898  1.050617  0.668755
57   0.325962  0.855819  1.064525  0.666667
58   0.324602  0.856898  1.078078  0.662859
59   0.323560  0.857241  1.085016  0.661938
60   0.322243  0.858662  1.093114  0.661140
61   0.320680  0.858872  1.117269  0.656841
62   0.319267  0.860004  1.138825  0.654815
63   0.318132  0.860636  1.154959  0.653648
64   0.316956  0.861531  1.180216  0.649718
65   0.315543  0.862320  1.198216  0.648428
66   0.314405  0.862610  1.218663  0.647384
67   0.313501  0.863873  1.245123  0.644252
68   0.312513  0.864558  1.262998  0.643147
69   0.311567  0.865347  1.283213  0.641918
70   0.310069  0.866505  1.302089  0.640752
71   0.309087  0.866611  1.318972  0.641857
72   0.307767  0.867321  1.361531  0.638787
73   0.306750  0.866742  1.382162  0.638357
74   0.305760  0.867242  1.378694  0.641611
75   0.305289  0.867769  1.393187  0.642594
76   0.304089  0.868479  1.435852  0.635532
77   0.302472  0.869006  1.435019  0.639892
78   0.301118  0.869400  1.447060  0.639216
79   0.300629  0.870058  1.488730  0.634918
80   0.299364  0.870295  1.488376  0.636576
81   0.298380  0.870822  1.504260  0.634611
82   0.297253  0.871664  1.525655  0.634058
83   0.296760  0.871875  1.538717  0.632891
84   0.295502  0.872585  1.551178  0.633751
85   0.294569  0.872927  1.562323  0.633137
86   0.294780  0.872585  1.555390  0.629944
87   0.293796  0.872743  1.587800  0.627057
88   0.293029  0.873427  1.608010  0.627549
89   0.291822  0.874006  1.626047  0.627303
90   0.290643  0.874533  1.651658  0.626689
91   0.289920  0.875270  1.681202  0.623925
92   0.289661  0.875375  1.683188  0.626505
93   0.288103  0.876323  1.706517  0.625031
94   0.287917  0.876770  1.722031  0.624417
95   0.287020  0.877270  1.743283  0.624478
96   0.286750  0.877639  1.762506  0.624048
97   0.285712  0.877481  1.780433  0.622267
98   0.284635  0.878639  1.789917  0.622206
99   0.283627  0.879191  1.862468  0.616925
100  0.282214  0.879455  1.915643  0.612810
101  0.281749  0.879244  1.881444  0.615205
102  0.281710  0.879639  1.916390  0.614223
103  0.280293  0.880350  1.938470  0.612810
104  0.279233  0.881008  1.979127  0.609187
105  0.279204  0.880297  1.997384  0.606546
106  0.278264  0.881876  2.009851  0.607652
107  0.277511  0.882876  2.038530  0.606116
108  0.277521  0.881771  2.034664  0.604888
109  0.276264  0.882534  2.058179  0.604827
110  0.275230  0.883587  2.078912  0.604274
111  0.275147  0.883034  2.073272  0.603537
112  0.273717  0.883797  2.100150  0.600958
113  0.273372  0.883692  2.114416  0.601634
114  0.272626  0.883692  2.129778  0.601941
115  0.272001  0.883929  2.138462  0.601326
116  0.271344  0.884508  2.148771  0.602923
117  0.270134  0.884692  2.115114  0.604581
118  0.269494  0.885140  2.135719  0.603107
119  0.268803  0.885587  2.162380  0.601695
120  0.268593  0.886219  2.183793  0.599239
121  0.267141  0.886035  2.195810  0.600221
122  0.266565  0.886772  2.192426  0.600528
123  0.265715  0.886561  2.260088  0.596598
124  0.264788  0.887693  2.253029  0.597335
125  0.263643  0.887693  2.289285  0.597028
126  0.263612  0.887956  2.311600  0.596536
127  0.261996  0.888588  2.339754  0.595063
128  0.263069  0.887588  2.364881  0.594449
129  0.261684  0.889272  2.321568  0.596598
130  0.261304  0.889509  2.389324  0.591562
131  0.260336  0.889640  2.403542  0.593098
132  0.259131  0.890272  2.413964  0.592115
133  0.258756  0.890193  2.422454  0.591992
134  0.257794  0.891009  2.454598  0.591255
135  0.257187  0.891009  2.459366  0.590088
136  0.257249  0.891088  2.448625  0.591624
137  0.256344  0.891404  2.495104  0.589167
138  0.255590  0.891720  2.495032  0.589781
139  0.254596  0.892299  2.496050  0.589229
140  0.254308  0.892588  2.510471  0.589536
141  0.253694  0.892509  2.519580  0.589720
142  0.252973  0.893088  2.527464  0.590273
143  0.252714  0.893194  2.553902  0.589106
144  0.252190  0.893720  2.536494  0.590457
145  0.251870  0.893352  2.553102  0.588799
146  0.250437  0.893694  2.565141  0.589597
147  0.250066  0.894141  2.575599  0.588553
148  0.249596  0.894273  2.590722  0.588123
149  0.248569  0.894983  2.596031  0.588676
150  0.248096  0.895273  2.602810  0.588860

Votre cas est étrange car votre perte de validation n'a jamais diminué. Votre taux d'apprentissage est étrangement élevé, les taux d'apprentissage typiques sont d'environ 0,001. Quel éventail de taux d'apprentissage avez-vous utilisé dans la recherche sur la grille?
Hugh

1
J'ai utilisé [1.000, 0.100, 0.010, 0.001]
user1367204

Cela peut être un peu tard, mais êtes-vous sûr que vos données correspondent à ce que vous pensez? Plus précisément, il est très étrange que votre précision de validation stagne, tandis que la perte de validation augmente, car ces deux valeurs doivent toujours se déplacer ensemble, par exemple. la diminution de la valeur de perte doit être associée à une augmentation proportionnelle de la précision. Vous pouvez le constater en cas de perte d'entraînement. À mesure que la perte d'entraînement diminue, la précision augmente également. Cependant, ce n'est pas le cas des données de validation dont vous disposez. Par conséquent, je voudrais certainement voir comment vous obtenez une perte de validation et un ac
matt_m

Réponses:


16

(cela peut être un doublon) Il semble que votre modèle soit trop ajusté, c'est-à-dire simplement mémoriser les données d'entraînement. En général, un modèle qui s'adapte trop peut être amélioré en ajoutant plus d'abandon, ou en formant et en validant sur un ensemble de données plus important. Expliquez plus sur les données / fonctionnalités et le modèle pour d'autres idées.


3
C'est un sur-ajustement très particulier. val_loss ne diminue jamais comme s'il n'y avait pas d'ajustement avant le surapprentissage. Savez-vous ce qui pourrait expliquer cela?
Hugh

3

Votre jeu de données d'apprentissage a peut-être des propriétés différentes de votre jeu de données de validation. C'est comme former un réseau pour faire la distinction entre un poulet et un avion, mais ensuite vous lui montrez une pomme. Plus vous l'entraînez, mieux c'est pour distinguer les poulets des avions, mais aussi pire c'est quand on lui montre une pomme. Je rencontre la même situation et je pense utiliser un Generative Adversarial Network pour identifier si un point de données de validation est «étranger» à l'ensemble de données de formation ou non

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.