Ceci est une publication croisée de Math SE .
J'ai quelques données (durée d'exécution d'un algorithme) et je pense que cela suit une loi de puissance
Je veux déterminer et . Ce que j'ai fait jusqu'à présent est de faire une régression linéaire (moindres carrés) à travers et de déterminer et partir de ses coefficients.
Mon problème est que, puisque l'erreur "absolue" est minimisée pour les "données de journal de bord", ce qui est minimisé lorsque vous regardez les données d'origine est le quotient
Cela conduit à une grande erreur absolue pour les grandes valeurs de . Existe-t-il un moyen de faire une "régression de la loi de puissance" qui minimise l'erreur "absolue" réelle? Ou au moins fait un meilleur travail pour le minimiser?
Exemple:
La courbe rouge est ajustée sur l'ensemble des données. La courbe verte ne passe que par les 21 derniers points.
Voici les données de l'intrigue. La colonne de gauche sont les valeurs de ( axe ), la colonne de droite sont les valeurs de ( axe )
1.000000000000000000e+02,1.944999820000248248e-03
1.120000000000000000e+02,1.278203080000253058e-03
1.250000000000000000e+02,2.479853309999952970e-03
1.410000000000000000e+02,2.767649050000500332e-03
1.580000000000000000e+02,3.161272610000196315e-03
1.770000000000000000e+02,3.536506440000266715e-03
1.990000000000000000e+02,3.165302929999711402e-03
2.230000000000000000e+02,3.115432719999944224e-03
2.510000000000000000e+02,4.102446610000356694e-03
2.810000000000000000e+02,6.248937529999807478e-03
3.160000000000000000e+02,4.109296799998674206e-03
3.540000000000000000e+02,8.410178100001530418e-03
3.980000000000000000e+02,9.524117600000181830e-03
4.460000000000000000e+02,8.694799099998817837e-03
5.010000000000000000e+02,1.267794469999898935e-02
5.620000000000000000e+02,1.376997950000031709e-02
6.300000000000000000e+02,1.553864030000227069e-02
7.070000000000000000e+02,1.608576049999897034e-02
7.940000000000000000e+02,2.055535920000011244e-02
8.910000000000000000e+02,2.381920090000448978e-02
1.000000000000000000e+03,2.922614199999884477e-02
1.122000000000000000e+03,1.785056299999610019e-02
1.258000000000000000e+03,3.823622889999569313e-02
1.412000000000000000e+03,3.297452850000013452e-02
1.584000000000000000e+03,4.841355780000071440e-02
1.778000000000000000e+03,4.927822640000271981e-02
1.995000000000000000e+03,6.248602919999939054e-02
2.238000000000000000e+03,7.927740400003813193e-02
2.511000000000000000e+03,9.425949999996419137e-02
2.818000000000000000e+03,1.212073290000148518e-01
3.162000000000000000e+03,1.363937510000141629e-01
3.548000000000000000e+03,1.598689289999697394e-01
3.981000000000000000e+03,2.055201890000262210e-01
4.466000000000000000e+03,2.308686839999722906e-01
5.011000000000000000e+03,2.683506760000113900e-01
5.623000000000000000e+03,3.307920660000149837e-01
6.309000000000000000e+03,3.641307770000139499e-01
7.079000000000000000e+03,5.151283440000042901e-01
7.943000000000000000e+03,5.910637860000065302e-01
8.912000000000000000e+03,5.568920769999863296e-01
1.000000000000000000e+04,6.339683309999486482e-01
1.258900000000000000e+04,1.250584726999989016e+00
1.584800000000000000e+04,1.820368430999963039e+00
1.995200000000000000e+04,2.750779816999994409e+00
2.511800000000000000e+04,4.136365994000016144e+00
3.162200000000000000e+04,5.498797844000023360e+00
3.981000000000000000e+04,7.895301083999981984e+00
5.011800000000000000e+04,9.843239714999981516e+00
6.309500000000000000e+04,1.641506008199996813e+01
7.943200000000000000e+04,2.786652209900000798e+01
1.000000000000000000e+05,3.607965075100003105e+01
1.258920000000000000e+05,5.501840400599996883e+01
1.584890000000000000e+05,8.544515980200003469e+01
1.995260000000000000e+05,1.273598972439999670e+02
2.511880000000000000e+05,1.870695913819999987e+02
3.162270000000000000e+05,3.076423412130000088e+02
3.981070000000000000e+05,4.243025571930002116e+02
5.011870000000000000e+05,6.972544795499998145e+02
6.309570000000000000e+05,1.137165088436000133e+03
7.943280000000000000e+05,1.615926472178005497e+03
1.000000000000000000e+06,2.734825116088002687e+03
1.584893000000000000e+06,6.900561992643000849e+03
(désolé pour la notation scientifique désordonnée)