Pas du tout. L'amplitude des coefficients dépend directement des échelles sélectionnées pour les variables, ce qui est une décision de modélisation quelque peu arbitraire.
Pour voir cela, considérons un modèle de régression linéaire prédisant la largeur des pétales d'un iris (en centimètres) compte tenu de sa longueur (en centimètres):
summary(lm(Petal.Width~Petal.Length, data=iris))
# Call:
# lm(formula = Petal.Width ~ Petal.Length, data = iris)
#
# Residuals:
# Min 1Q Median 3Q Max
# -0.56515 -0.12358 -0.01898 0.13288 0.64272
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.363076 0.039762 -9.131 4.7e-16 ***
# Petal.Length 0.415755 0.009582 43.387 < 2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.2065 on 148 degrees of freedom
# Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
# F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16
Notre modèle atteint une valeur R ^ 2 ajustée de 0,9266 et attribue une valeur de coefficient 0,415755 à la variable Longueur du pétale.
Cependant, le choix de définir Petal.Length en centimètres était assez arbitraire, et nous aurions pu définir la variable en mètres:
iris$Petal.Length.Meters <- iris$Petal.Length / 100
summary(lm(Petal.Width~Petal.Length.Meters, data=iris))
# Call:
# lm(formula = Petal.Width ~ Petal.Length.Meters, data = iris)
#
# Residuals:
# Min 1Q Median 3Q Max
# -0.56515 -0.12358 -0.01898 0.13288 0.64272
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.36308 0.03976 -9.131 4.7e-16 ***
# Petal.Length.Meters 41.57554 0.95824 43.387 < 2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.2065 on 148 degrees of freedom
# Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
# F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16
Bien sûr, cela n'affecte pas vraiment le modèle ajusté - nous avons simplement attribué un coefficient 100 fois plus élevé à Petal.Length.Meters (41.57554) qu'à Petal.Length (0.415755). Toutes les autres propriétés du modèle (R ^ 2 ajusté, statistiques t, valeurs p, etc.) sont identiques.
Généralement, lors de l'ajustement de modèles linéaires régularisés, on normalisera d'abord les variables (par exemple, pour avoir une moyenne de 0 et une variance unitaire) afin d'éviter de privilégier certaines variables par rapport à d'autres en fonction des échelles sélectionnées.
En supposant des données normalisées
Même si vous aviez normalisé toutes les variables, les variables avec des coefficients plus élevés peuvent ne pas être aussi utiles dans les prédictions car les variables indépendantes sont rarement définies (ont une faible variance). Par exemple, considérons un ensemble de données avec la variable dépendante Z et les variables indépendantes X et Y prenant des valeurs binaires
set.seed(144)
dat <- data.frame(X=rep(c(0, 1), each=50000),
Y=rep(c(0, 1), c(1000, 99000)))
dat$Z <- dat$X + 2*dat$Y + rnorm(100000)
Par construction, le coefficient pour Y est environ deux fois plus grand que le coefficient pour X lorsque les deux sont utilisés pour prédire Z par régression linéaire:
summary(lm(Z~X+Y, data=dat))
# Call:
# lm(formula = Z ~ X + Y, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -4.4991 -0.6749 -0.0056 0.6723 4.7342
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.094793 0.031598 -3.00 0.0027 **
# X 0.999435 0.006352 157.35 <2e-16 ***
# Y 2.099410 0.031919 65.77 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.9992 on 99997 degrees of freedom
# Multiple R-squared: 0.2394, Adjusted R-squared: 0.2394
# F-statistic: 1.574e+04 on 2 and 99997 DF, p-value: < 2.2e-16
Pourtant, X explique plus la variance de Z que Y (le modèle de régression linéaire prédisant Z avec X a une valeur R ^ 2 0,2065, tandis que le modèle de régression linéaire prédisant Z avec Y a une valeur R ^ 2 0,0511):
summary(lm(Z~X, data=dat))
# Call:
# lm(formula = Z ~ X, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -5.2587 -0.6759 0.0038 0.6842 4.7342
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.962629 0.004564 430.0 <2e-16 ***
# X 1.041424 0.006455 161.3 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 1.021 on 99998 degrees of freedom
# Multiple R-squared: 0.2065, Adjusted R-squared: 0.2065
# F-statistic: 2.603e+04 on 1 and 99998 DF, p-value: < 2.2e-16
contre:
summary(lm(Z~Y, data=dat))
# Call:
# lm(formula = Z ~ Y, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -5.0038 -0.7638 -0.0007 0.7610 5.2288
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.09479 0.03529 -2.686 0.00724 **
# Y 2.60418 0.03547 73.416 < 2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 1.116 on 99998 degrees of freedom
# Multiple R-squared: 0.05114, Adjusted R-squared: 0.05113
# F-statistic: 5390 on 1 and 99998 DF, p-value: < 2.2e-16
Le cas de la multi-colinéarité
Un troisième cas où de grandes valeurs de coefficient peuvent être trompeuses serait dans le cas d'une multi-colinéarité significative entre les variables. Par exemple, considérons un ensemble de données où X et Y sont fortement corrélés mais W n'est pas fortement corrélé aux deux autres; nous essayons de prédire Z:
set.seed(144)
dat <- data.frame(W=rnorm(100000),
X=rnorm(100000))
dat$Y <- dat$X + rnorm(100000, 0, 0.001)
dat$Z <- 2*dat$W+10*dat$X-11*dat$Y + rnorm(100000)
cor(dat)
# W X Y Z
# W 1.000000e+00 5.191809e-05 5.200434e-05 0.8161636
# X 5.191809e-05 1.000000e+00 9.999995e-01 -0.4079183
# Y 5.200434e-05 9.999995e-01 1.000000e+00 -0.4079246
# Z 8.161636e-01 -4.079183e-01 -4.079246e-01 1.0000000
Ces variables ont à peu près la même moyenne (0) et la variance (~ 1), et la régression linéaire attribue des valeurs de coefficient beaucoup plus élevées (en valeur absolue) à X (environ 15) et Y (environ -16) qu'à W ( environ 2):
summary(lm(Z~W+X+Y, data=dat))
# Call:
# lm(formula = Z ~ W + X + Y, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -4.1886 -0.6760 0.0026 0.6679 4.2232
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.831e-04 3.170e-03 0.058 0.954
# W 2.001e+00 3.172e-03 630.811 < 2e-16 ***
# X 1.509e+01 3.177e+00 4.748 2.05e-06 ***
# Y -1.609e+01 3.177e+00 -5.063 4.13e-07 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 1.002 on 99996 degrees of freedom
# Multiple R-squared: 0.8326, Adjusted R-squared: 0.8326
# F-statistic: 1.658e+05 on 3 and 99996 DF, p-value: < 2.2e-16
Pourtant, parmi les trois variables du modèle W est la plus importante: si vous supprimez W du modèle complet, le R ^ 2 passe de 0,833 à 0,166, tandis que si vous supprimez X ou Y le R ^ 2 est pratiquement inchangé.