Aujourd'hui, je jouais avec un petit ensemble de données et j'ai effectué une régression OLS simple que je m'attendais à échouer en raison d'une parfaite multicolinéarité. Mais ce ne fut pas le cas. Cela implique que ma compréhension de la multicolinéarité est fausse.
Ma question est: où je me trompe?
Je pense que je peux montrer qu'une de mes variables est une combinaison linéaire des autres. Cela devrait conduire à une matrice de régresseur qui n'a pas de rang complet et donc les coefficients ne devraient pas être identifiés.
J'ai généré un petit jeu de données reproductible (code ci-dessous) :
exporter importer flow dist intraUS
1 Canada Canada 996.8677 6.367287 0
2 Florida Canada 995.8219 9.190562 0
3 Texas Canada 1001.6475 4.359063 0
4 Mexico Canada 1002.4371 7.476649 0
5 Canada Florida 1002.8789 5.389223 0
6 Florida Florida 1007.5589 6.779686 1
7 Texas Florida 996.8938 1.570600 1
8 Mexico Florida 1005.6247 5.910133 0
9 Canada Texas 999.9190 7.887672 0
10 Florida Texas 1004.1061 7.187803 1
11 Texas Texas 1004.5949 7.564273 1
12 Mexico Texas 1000.3728 2.021297 0
13 Canada Mexico 1003.0991 5.887743 0
14 Florida Mexico 999.2210 3.058495 0
15 Texas Mexico 997.6092 6.835883 0
16 Mexico Mexico 1006.7934 5.794425 0
Chaque fois que l'exportateur et l'importateur sont des États américains, le mannequin l' intraUSest 1.
Maintenant, j'effectue une régression de (commerce) flowsur exporteret des importermannequins, distance et le intraUSmannequin. L'alimentation de R avec la formule suivante lm(flow ~ dist + exporter + importer + intraUS, data = dat)renvoie des estimations pour tous les coefficients, aucune valeur manquante ni avertissement concernant la singularité:
(Intercept) dist exporterFlorida exporterTexas exporterMexico importerFlorida importerTexas importerMexico intraUS1
995.1033157 0.5744661 -1.2340338 -1.8792073 3.7375783 3.0361727 1.3256032 3.3225512 4.2429599
Ce casse - tête moi, parce que la matrice de régresseur indique clairement que intraUSest une combinaison linéaire exporterFlorida, importerFlorida, exporterTexaset importerTexas:
> mmat <- data.frame(model.matrix(lm(flow ~ dist + exporter + importer + intraUS, data = dat)))
X.Intercept. dist exporterFlorida exporterTexas exporterMexico importerFlorida importerTexas importerMexico intraUS1
1 1 6.367287 0 0 0 0 0 0 0
2 1 9.190562 1 0 0 0 0 0 0
3 1 4.359063 0 1 0 0 0 0 0
4 1 7.476649 0 0 1 0 0 0 0
5 1 5.389223 0 0 0 1 0 0 0
6 1 6.779686 1 0 0 1 0 0 1
7 1 1.570600 0 1 0 1 0 0 1
8 1 5.910133 0 0 1 1 0 0 0
9 1 7.887672 0 0 0 0 1 0 0
10 1 7.187803 1 0 0 0 1 0 1
11 1 7.564273 0 1 0 0 1 0 1
12 1 2.021297 0 0 1 0 1 0 0
13 1 5.887743 0 0 0 0 0 1 0
14 1 3.058495 1 0 0 0 0 1 0
15 1 6.835883 0 1 0 0 0 1 0
16 1 5.794425 0 0 1 0 0 1 0
Le calcul exporterFlorida * importerFlorida + exporterFlorida * importerTexas + exporterTexas * importerFlorida + exporterTexas * importerTexasdonne - sans surprise - exactement les valeurs en intraUS1.
Donc, ma question est, encore une fois : pourquoi cette régression n'échoue pas , étant donné qu'une variable est une combinaison linéaire des autres?
Sous le code complet, reproduisez l'estimation:
## Generate data ####
set.seed(1)
states <- c("Canada", "Florida", "Texas", "Mexico")
dat <- expand.grid(states, states)
colnames(dat) <- c("exporter", "importer")
dat[, "flow"] <- NA
dat[, "dist"] <- NA
dat[, "intraUS"] <- 0
for (i in 1:nrow(dat)) {
dat[i, c("flow", "dist")] <- c(rnorm(1, mean = 1000, sd = 5), rnorm(1, mean = 6, sd = 2))
if (dat[i, "exporter"] %in% states[2:3] && dat[i, "importer"] %in% states[2:3]) {
dat[i, "intraUS"] <- 1
}
}
dat$intraUS <- factor(dat$intraUS)
## Run regression - works! ####
summary(lm(flow ~ dist + exporter + importer + intraUS, data = dat))
## Show that "intraUS1" is a linear combination of the dummies. ####
mmat <- data.frame(model.matrix(lm(flow ~ dist + exporter + importer + intraUS, data = dat)))
cbind(mmat, test = with(mmat,
exporterFlorida * importerFlorida + exporterFlorida * importerTexas +
exporterTexas * importerFlorida + exporterTexas * importerTexas
))[, c("intraUS1", "test")]