Puis-je appeler un modèle dans lequel le théorème de Bayes est utilisé comme un "modèle bayésien"? Je crains qu'une telle définition ne soit trop large.
Alors, quel est exactement un modèle bayésien?
Puis-je appeler un modèle dans lequel le théorème de Bayes est utilisé comme un "modèle bayésien"? Je crains qu'une telle définition ne soit trop large.
Alors, quel est exactement un modèle bayésien?
Réponses:
Pour l’essentiel, l’inférence repose sur l’utilisation du théorème de Bayes pour obtenir une distribution postérieure d’une quantité ou de quantités d’intérêt formant un modèle (tel que des valeurs de paramètres) basé sur une distribution antérieure des paramètres inconnus pertinents et la vraisemblance issue du modèle.
C'est-à-dire qu'à partir d'un modèle de distribution d'une forme quelconque, , et d'un p antérieur ( θ ) , quelqu'un pourrait chercher à obtenir le p postérieur ( θ | X ) .
Un exemple simple de modèle bayésien est présenté dans cette question et dans les commentaires de celle-ci - Régression linéaire bayésienne, décrits plus en détail dans Wikipedia ici.. Searches turn up discussions of a number of Bayesian models here.
Mais il y a d'autres choses que l'on pourrait essayer de faire avec une analyse bayésienne en plus d'un modèle - voir, par exemple, la théorie de la décision bayésienne.
A Bayesian model is just a model that draws its inferences from the posterior distribution, i.e. utilizes a prior distribution and a likelihood which are related by Bayes' theorem.
Can I call a model wherein Bayes' Theorem is used a "Bayesian model"?
No
I am afraid such a definition might be too broad.
You are right. Bayes' theorem is a legitimate relation between marginal event probabilities and conditional probabilities. It holds regardless of your interpretation of probability.
So what exactly is a Bayesian model?
If you're using prior and posterior concepts anywhere in your exposition or interpretation, then you're likely to be using model Bayesian, but this is not the absolute rule, because these concepts are also used in non-Bayesian approaches.
In a broader sense though you must be subscribing to Bayesian interpretation of probability as a subjective belief. This little theorem of Bayes was extended and stretched by some people into this entire world view and even, shall I say, philosophy. If you belong to this camp then you are Bayesian. Bayes had no idea this would happen to his theorem. He'd be horrified, me thinks.
A statistical model can be seen as a procedure/story describing how some data came to be. A Bayesian model is a statistical model where you use probability to represent all uncertainty within the model, both the uncertainty regarding the output but also the uncertainty regarding the input (aka parameters) to the model. The whole prior/posterior/Bayes theorem thing follows on this, but in my opinion, using probability for everything is what makes it Bayesian (and indeed a better word would perhaps just be something like probabilistic model).
That means that most other statistical models can be "cast into" a Bayesian model by modifying them to be using probability everywhere. This is especially true for models that rely on maximum likelihood, as maximum likelihood model fitting is a strict subset to Bayesian model fitting.
Your question is more on the semantic side: when can I call a model "Bayesian"?
Drawing conclusions from this excellent paper:
Fienberg, S. E. (2006). When did bayesian inference become "bayesian"? Bayesian Analysis, 1(1):1-40.
there are 2 answers:
Surprisingly, the "Bayesian models" terminology that is used all over the field only settled down around the 60s. There are many things to learn about machine learning just by looking at its history!