La génération de la n-ième combinaison est appelée un algorithme "non classé". Notez que les permutations et les combinaisons peuvent souvent être assimilées par la façon dont le problème est paramétré. Sans savoir exactement quel est le problème, il est difficile de recommander la bonne approche exacte, et en fait, pour la plupart des problèmes combinatoires, il existe généralement plusieurs algorithmes de classement / classement différents.
Une bonne ressource est "Algorithmes combinatoires" de Kreher et Stinson. Ce livre a de nombreux algorithmes de bon classement et non classés clairement expliqués. Il existe des ressources plus avancées, mais je recommanderais Kreher comme point de départ. À titre d'exemple d'algorithme non classé, considérez ce qui suit:
/** PKSUL : permutation given its rank, the slots and the total number of items
* A combinatorial ranking is number of the permutation when sorted in lexicographical order
* Example: given the set { 1, 2, 3, 4 } the ctItems is 4, if the slot count is 3 we have:
* 1: 123 7: 213 13: 312 19: 412
* 2: 124 8: 214 14: 314 20: 413
* 3: 132 9: 231 15: 321 21: 421
* 4: 134 10: 234 16: 324 22: 423
* 5: 142 11: 241 17: 341 23: 431
* 6: 143 12: 243 18: 342 24: 432
* From this we can see that the rank of { 2, 4, 1 } is 11, for example. To unrank the value of 11:
* unrank( 11 ) = { 11 % (slots - digit_place)!, unrank( remainder ) }
* @param rank the one-based rank of the permutation
* @param ctItems the total number of items in the set
* @param ctSlots the number of slots into which the permuations are generated
* @param zOneBased whether the permutation array is one-based or zero-based
* @return zero- or one-based array containing the permutation out of the set { ctItems, 1,...,ctItems }
*/
public static int[] pksul( final int rank, final int ctItems, final int ctSlots, boolean zOneBased ){
if( ctSlots <= 0 || ctItems <= 0 || rank <= 0 ) return null;
long iFactorial = factorial_long( ctItems - 1 ) / factorial_long( ctItems - ctSlots );
int lenPermutation = zOneBased ? ctSlots + 1 : ctSlots;
int[] permutation = new int[ lenPermutation ];
int[] listItemsRemaining = new int[ ctItems + 1 ];
for( int xItem = 1; xItem <= ctItems; xItem++ ) listItemsRemaining[xItem] = xItem;
int iRemainder = rank - 1;
int xSlot = 1;
while( true ){
int iOrder = (int)( iRemainder / iFactorial ) + 1;
iRemainder = (int)( iRemainder % iFactorial );
int iPlaceValue = listItemsRemaining[ iOrder ];
if( zOneBased ){
permutation[xSlot] = iPlaceValue;
} else {
permutation[xSlot - 1] = iPlaceValue;
}
for( int xItem = iOrder; xItem < ctItems; xItem++ ) listItemsRemaining[xItem] = listItemsRemaining[xItem + 1]; // shift remaining items to the left
if( xSlot == ctSlots ) break;
iFactorial /= ( ctItems - xSlot );
xSlot++;
}
if( zOneBased ) permutation[0] = ctSlots;
return permutation;
}
Il s'agit d'une permutation sans classement, mais comme mentionné ci-dessus, dans de nombreux cas, vous pouvez convertir une combinaison sans classement en un problème de permutation équivalent.