Je voudrais qu'un schéma représente des nombres entiers commençant par 0, sans aucune limite (en supposant l'accès au stockage linéaire infini).
Voici un schéma qui peut représenter des nombres de 0 à 255:
Utilisez le premier octet de la mémoire (adresse 0) pour stocker l'entier.
Supposons maintenant que je veuille représenter des nombres supérieurs à 255. Bien sûr, je pourrais utiliser plus d'un octet pour représenter l'entier, mais tant qu'il s'agit d'un nombre fixe, il y aura finalement un entier si grand qu'il ne pourra pas être représenté par le schéma d'origine.
Voici un autre schéma qui devrait être en mesure de faire la tâche, mais il est probablement loin d'être efficace.
Utilisez simplement une sorte d'octet unique de "fin de numéro" et utilisez tous les octets précédents pour représenter le nombre. Évidemment, cet octet de "fin de nombre" ne peut être utilisé nulle part dans la représentation numérique, mais cela peut être réalisé en utilisant un système de numérotation base-255 (au lieu de base-256).
Cependant, c'est lent et probablement inefficace. Je veux en avoir un meilleur qui fonctionne mieux avec des valeurs faibles et qui évolue bien.
C'est essentiellement un système UUID. Je veux voir s'il est possible de créer un système UUID à performance rapide qui peut théoriquement évoluer pour être utilisé pendant des années, des milliers d'années, des millions d'années, sans avoir à être repensé.