Qu'est-ce qu'un bac de fréquence?


16

Je fais une recherche sur la méthode FFT, et un terme qui revient toujours est "fréquence bin". D'après ce que je comprends, cela a quelque chose à voir avec la bande créée autour de la fréquence d'une sinusoïde donnée, mais je ne peux pas vraiment comprendre comment. J'ai également compris comment passer d'un bac donné à sa fréquence associée, mais je n'ai toujours aucune intuition sur ce qu'est un bac de fréquence.

Réponses:


10

C'est plus simple que vous ne le pensez. Lorsque nous discrétisons les fréquences, nous obtenons des bacs de fréquences. Ainsi, lorsque vous discrétisez votre transformée de Fourier: Nos fréquences continues deviennent N bins discrets.

e-jωe-j2πk/N
N

C'est exactement la raison pour laquelle ce qui suit est vrai: Notez que la FFT représente les fréquences 0 à fréquence d'échantillonnage Hz.

nthbjen=nsunempleFreqnum(FTpojents)

5
Quelles fréquences chaque bin représente-t-il alors? Par exemple, si la formule ci-dessus propose 1 000 Hz pour un bac (supposons 1 Hz de large), un bac représente-t-il 1000 000 à 1 000 999 ou est-il centré - par exemple 999,5 à 1 000,5?
Roger Binns

1
Vérifiez la réponse de cette question stackoverflow.com/questions/10754549/… . Chaque bac a une largeur de SAMPLE_RATE / NUM_POINTS (Hz). Et c'est le centre de la poubelle, donc sa portée est de la moitié avant la moitié à la moitié après le centre. Consultez également ce en.wikipedia.org/wiki/Histogramme , il contient des explications sur le terme «bin».
mortalis

9

Un groupe de fréquences est un segment [fl,fh]de l'axe des fréquences qui "collectent" l'amplitude, la magnitude ou l'énergie d'une petite gamme de fréquences, résultant souvent d'une analyse de Fourier. En raison de la discrétisation des données (éventuellement due à l'échantillonnage), il n'est généralement pas possible d'attribuer une amplitude précise à chaque fréquence sur un axe réel. La fréquence bin peut être dérivée par exemple de la fréquence d'échantillonnage et de la résolution de la transformée de Fourier. Cependant, une partie de l'amplitude calculée peut être attribuée à des fréquences du signal réel qui ne sont pas contenues dans la plage bin. Les termes associés à ce phénomène peuvent être fuite, maculage, aliasing, fenêtrage, et dépendent des outils utilisés pour obtenir ces amplitudes. Un exemple est démontré sur la figure suivante: un sinus pur est échantillonné et analysé à travers une fenêtre rectangulaire.

FFT d'un sinus pur

[fl,fh]fl+fh2fl

Des concepts similaires peuvent être trouvés dans les cases de probabilité.


5

Une FFT est une méthode de calcul d'une DFT. Et un DFT est une transformation d'un vecteur de longueur finie qui produit le même nombre fini de résultats. Cependant, la plage de fréquences d'une sinusoïde qui peut être fenêtrée à une longueur finie pour être envoyée à une FFT est infinie. Ainsi, chaque élément de vecteur de résultat d'une FFT est principalement associé à un petit segment de ce continuum de fréquence, plutôt qu'à un point (la fréquence centrale de la FFT).

Parfois, les bacs sont idéalisés comme des filtres rectangulaires à largeur fixe. Mais la forme réelle de chaque bac de résultat FFT n'est pas un seau rectangulaire, mais soit en forme de Sinc, soit en forme comme la transformation de toute fonction de fenêtre non rectangulaire qui a éventuellement été appliquée. Notez que ces cases de résultat peuvent être plus larges en vrac que la distance entre les cases FFT, avec des queues (la bande d'arrêt) qui s'étalent sur toute la largeur du résultat. Ces queues sont parfois appelées "fuites".


Je ne comprends pas votre 2e paragraphe. Veuillez expliquer la différence, le cas échéant, entre un "bac de fréquence" et l'un des éléments du tableau renvoyés par une FFT.
user5108_Dan

Un élément de tableau de résultats FFT est un résumé du contenu spectral du bac associé. Également la corrélation avec le vecteur de base associé à cet élément.
hotpaw2

Les sinusoïdes pures fenêtrées dans un bac ont généralement une corrélation plus élevée avec le vecteur de base que les éléments extérieurs (bien que cela dépende de la fenêtre appliquée).
hotpaw2

0

Bonne info ici .

D'après cela et la connaissance de l'audio échantillonné, la fréquence la plus élevée dans les bacs ne peut pas être supérieure à la moitié de la fréquence d'échantillonnage (en Hz). De plus, selon cette conversation de pile , 0 est la fréquence de bac la plus basse (également appelée composante CC). Le premier lien décrit également en détail les fuites et leur compensation.

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.