4
Méthode d'intégration numérique d'une intégrale oscillatoire difficile
J'ai besoin d'évaluer numériquement l'intégrale ci-dessous: ∫∞0s i n c′(xr)rE(r)−−−−√dr∫0∞sinc′(xr)rE(r)dr\int_0^\infty \mathrm{sinc}'(xr) r \sqrt{E(r)} dr où , et . Ici est la fonction de Bessel modifiée du second type. Dans mon cas particulier, j'ai , etx∈R+λ,κ,ν>0Kλ=0,00313κ=0,00825ν=0,33E(r)=r4(λκ2+r2−−−−−−√)−ν−5/2K−ν−5/2(λκ2+r2−−−−−−√)E(r)=r4(λκ2+r2)−ν−5/2K−ν−5/2(λκ2+r2)E(r) = r^4 (\lambda\sqrt{\kappa^2+r^2})^{-\nu-5/2} K_{-\nu-5/2}(\lambda\sqrt{\kappa^2+r^2})x ∈ R+x∈R+x \in \mathbb{R}_+λ , κ , ν> 0λ,κ,ν>0\lambda, \kappa, \nu …