Pour un exemple simple, supposons que vous ayez deux qubits dans des états définis et | 0 ⟩ . L'état combiné du système est | 0 ⟩ ⊗ | 0 ⟩ ou | 00 ⟩ en sténographie.|0⟩|0⟩|0⟩⊗|0⟩|00⟩
Ensuite, si nous appliquons les opérateurs suivants aux qubits (l'image est coupée de la page wiki de codage superdense ), l'état résultant est un état intriqué, l'un des états de la cloche .
Tout d'abord dans l'image, nous avons la porte hadamard agissant sur le premier qubit, qui dans une forme plus longue est sorte qu'elle est l'opérateur d'identité sur le deuxième qubit.H⊗I
La matrice de hadamard ressemble à
où la base est ordonnée{| 0⟩,| 1⟩}.
H=12–√(111−1)
{|0⟩,|1⟩}
Donc, après que l'opérateur hadamard a agi, l'État est maintenant
(H⊗I)(|0⟩⊗|0⟩)=H|0⟩⊗I|0⟩=12–√(|0⟩+|1⟩)⊗(|0⟩)=12–√(|00⟩+|10⟩)
La partie suivante du circuit est une porte non commandée, qui n'agit sur le deuxième qubit que si le premier qubit est un .1
Vous pouvez représenter comme | 0 ⟩ ⟨ 0 | ⊗ I + | 1 ⟩ ⟨ 1 | ⊗ X , où | 0 ⟩ ⟨ 0 | est un opérateur de projection sur le bit 0 , ou sous forme matricielle ( 1 0 0 0 ) . De même | 1 ⟩ ⟨ 1 | est ( 0 0 0 1 ) .CNOT|0⟩⟨0|⊗I+|1⟩⟨1|⊗X|0⟩⟨0|0(1000)|1⟩⟨1|(0001)
L' opérateur est l'opérateur de basculement de bits représenté par ( 0 1 1 0 ) .X(0110)
Globalement, la matrice est ( 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 )CNOT⎛⎝⎜⎜⎜1000010000010010⎞⎠⎟⎟⎟
Lorsque nous appliquons le nous pouvons soit utiliser la multiplication matricielle en écrivant notre état comme vecteur ( 1CNOT, ou nous pouvons simplement utiliser la forme du produit tensoriel.⎛⎝⎜⎜⎜⎜⎜12√012√0⎞⎠⎟⎟⎟⎟⎟
CNOT(12–√(|00⟩+|10⟩))=12–√(|00⟩+|11⟩)
On voit que pour la première partie de l'Etat le premier bit est 0 , de sorte que le second bit est laissé seul; la deuxième partie de l'état | 10 ⟩ le premier bit est 1 , de sorte que le second bit est lancée d' 0 à 1 .|00⟩0|10⟩101
Notre état final est
12–√(|00⟩+|11⟩)
which is one of the four Bell states which are maximally entangled states.
To see what it means for them to be entangled, notice that if you were to measure the state of the first qubit say, if you found out that it was a 0 it immediately tells you the second qubit also has to be a 0, because thats our only possibility.
Compare to this state for instance:
12(|00⟩+|01⟩+|10⟩+|11⟩).
If you measure that the first qubit is a zero, then the state collapses to 12√(|00⟩+|01⟩), where there is still a 50-50 chance the second qubit is a 0 or a 1.
Hopefully this gives an idea how states can be entangled. If you want to know a particular example, like entangling photons or electrons etc, then you would have to look into how certain gates can be implemented, but still you might write the mathematics the same way, the 0 and 1 might represent different things in different physical situations.
Update 1: Mini Guide to QM/QC/Dirac notation
Usually there's a standard computational (ortho-normal) basis for a single qubit which is {|0⟩,|1⟩}, say H=span{|0⟩,|1⟩} is the vector space.
|0⟩(10)|1⟩(01)Xσx|0⟩↦|1⟩|1⟩↦|0⟩, can be written as (0110), the first column of the matrix is the image of the first basis vector and so on.
When you have multiple say n-qubits they should belong to the space H⊗n:=H⊗H⊗⋯⊗Hn−times. A basis for this space is labelled by strings of zeros and ones, e.g. |0⟩⊗|1⟩⊗|1⟩⊗…⊗|0⟩, which is usually abbreviated for simplicity as |011…0⟩.
A simple example for two qubits, the basis for H⊗2=H⊗H, is {|0⟩⊗|0⟩,|0⟩⊗|1⟩,|1⟩⊗|0⟩,|1⟩⊗|1⟩} or in the shorthand {|00⟩,|01⟩,|10⟩,|11⟩}.
There's different ways to order this basis in order to use matrices, but one natural one is to order the strings as if they are numbers in binary so as above. For example for 3 qubits you could order the basis as
{|000⟩,|001⟩,|010⟩,|011⟩,|100⟩,|101⟩,|110⟩,|111⟩}.
The reason why this can be useful is that it corresponds with the Kronecker product for the matrices of the operators. For instance, first looking at the basis vectors:
|0⟩⊗|0⟩=(10)⊗(10):=⎛⎝⎜⎜⎜1⋅(10)0⋅(10)⎞⎠⎟⎟⎟=⎛⎝⎜⎜⎜1000⎞⎠⎟⎟⎟
and
|0⟩⊗|1⟩=(10)⊗(01):=⎛⎝⎜⎜⎜1⋅(01)0⋅(10)⎞⎠⎟⎟⎟=⎛⎝⎜⎜⎜0100⎞⎠⎟⎟⎟
and similarly
|1⟩⊗|0⟩=⎛⎝⎜⎜⎜0010⎞⎠⎟⎟⎟,|1⟩⊗|1⟩=⎛⎝⎜⎜⎜0001⎞⎠⎟⎟⎟
If you have an operator e.g. X1X2:=X⊗X which acts on two qubits and we order the basis as above we can take the kronecker product of the matrices to find the matrix in this basis:
X1X2=X⊗X=(0110)⊗(0110)=⎛⎝⎜⎜⎜0⋅(0110)1⋅(0110)1⋅(0110)0⋅(0110)⎞⎠⎟⎟⎟=⎛⎝⎜⎜⎜0001001001001000⎞⎠⎟⎟⎟
If we look at the example of CNOT above given as |0⟩⟨0|⊗I+|1⟩⟨1|⊗X.∗ This can be computed in matrix form as (1000)⊗(1001)+(0001)⊗(0110), which you can check is the CNOT matrix above.
It's worthwhile getting used to using the shorthands and the tensor products rather than converting everything to matrix representation since the computational space grows as 2n for n-qubits, which means for three cubits you have 8×8 matrices, 4-qubits you have 16×16 matrices and it quickly becomes less than practical to convert to matrix form.
Aside∗: There are a few common ways to use dirac notation, to represent vectors like |0⟩; dual vectors e.g. ⟨0|, inner product ⟨0|1⟩ between the vectors |0⟩ and |1⟩; operators on the space like X=|0⟩⟨1|+|1⟩⟨0|.
An operator like P0=|0⟩⟨0| is a projection operator is a (orthogonal) projection operator because it satisfies P2=P and P†=P.