Prendre un oscillateur harmonique simple (SHO) à modes dans un espace (Fock) F = ⨂ k H k , où H k est l'espace de Hilbert d'un SHO en mode k .nF=⨂kHkHkk
Cela donne l'habitude opérateur d'annihilation , qui agissent sur un état numérique comme un k | nakpourn≥1etunk| 0⟩=0et l'opérateur de création en modekcommeun † k , agissant sur un état numérique commeun † k | n⟩= √ak|n⟩=n−−√|n−1⟩n≥1ak|0⟩=0ka†k.a†k|n⟩=n+1−−−−−√|n+1⟩
L'hamiltonien de la SHO est (dans les unités oùℏH=ω(a†kak+12) ).ℏ=1
On peut alors définir les quadratures Pk=-i
Xk=12–√(ak+a†k)
qui sont observables. À ce stade, plusieurs opérations (hamiltoniens) peuvent être effectuées. L'effet d'une telle opération sur les quadratures peut être trouvé en utilisant l'évolution temporelle d'un opérateur
Acomme
˙A=i[H,A]. Leur application pour l'instant
tdonne:
X:P↦P-tP:X↦X+t1Pk=−i2–√(ak−a†k)
AA˙=i[H,A]tX:P↦P−t
P:X↦X+t
12(X2+P2):X↦costX−sintP,P↦costP+sintX,
ω=1±S=±12(XP+PX):X↦e±tX,P↦e∓tP,
which is known as the squeezing operator, where
+S(−S) squeezes
P(X).
Any Hamiltonian of the form aX+bP+c can be built by applying X and P. Adding S and H allows for any quadratic Hamiltonian to be built. Further adding the (nonlinear) Kerr Hamiltonian
(X2+P2)2
allows for
any polynomial Hamiltonian to be created.
Finally, including the beamsplitter operation (on two modes j and k)
±Bjk=±(PjXk−XjPk):Aj↦costAj+sintAk,Ak↦costAk−sintAj
for
Aj=Xj,Pj and
Ak=Xk,Pk, which acts as a beamsplitter on the two modes.
The above operations form the universal gate-set for continuous variable quantum computing. More details can be found in e.g. here
To implement these unitaries:
Applying these operations is generally hinted at in the name:
Coupling a current is acting as the displacement operator D(α(t)) where, for an electric field ε and current j, α(t)=i∫tt0∫j(r,t′)⋅εe−i(k⋅r−wkt′)drdt′. The displacement operator shifts X by the real part of α and P by the imaginary part of α.
A phase shift can be applied by simply letting the system evolve by itself, as the system is a harmonic oscillator. It can also be performed by using a physical phase shifter.
Squeezing is the hard bit and is something that needs to experimentally be improved. Such methods can be found in e.g. here and here is one experiment using a limited amount of squeezed light. One possible way of squeezing is using a Kerr (χ(3)) nonlinearity.
This same nonlinearity also allows for the Kerr Hamiltonian to be implemented.
The Beamsplitter operation is, unsurprisingly, performed using a beamsplitter.