Réponses:
Utilisez set
si vous ne vous souciez pas de la commande ou de la répétition des articles. Utilisez des listes de compréhension si vous le faites:
>>> def diff(first, second):
second = set(second)
return [item for item in first if item not in second]
>>> diff(A, B)
[1, 3, 4]
>>> diff(B, A)
[5]
>>>
set
à B est inoffensif, mais l'appliquer à A
et utiliser le résultat au lieu de l'original A
ne l'est pas.
Si la commande n'a pas d'importance, vous pouvez simplement calculer la différence définie:
>>> set([1,2,3,4]) - set([2,5])
set([1, 4, 3])
>>> set([2,5]) - set([1,2,3,4])
set([5])
Vous pouvez faire un
list(set(A)-set(B))
et
list(set(B)-set(A))
Bon mot:
diff = lambda l1,l2: [x for x in l1 if x not in l2]
diff(A,B)
diff(B,A)
Ou:
diff = lambda l1,l2: filter(lambda x: x not in l2, l1)
diff(A,B)
diff(B,A)
Les exemples ci-dessus ont banalisé le problème du calcul des différences. En supposant que le tri ou la déduplication facilite certainement le calcul de la différence, mais si votre comparaison ne peut pas se permettre ces hypothèses, vous aurez besoin d'une implémentation non triviale d'un algorithme diff. Voir difflib dans la bibliothèque standard de python.
from difflib import SequenceMatcher
squeeze=SequenceMatcher( None, A, B )
print "A - B = [%s]"%( reduce( lambda p,q: p+q,
map( lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes() ) ) ) )
A - B = [[1, 3, 4]]
print
est passé d'une commande à une fonction, et reduce
, filter
et map
ont été déclarés non pythoniques. (Et je pense que Guido a peut-être raison - je ne comprends pas reduce
non plus.)
Python 2.7.3 (par défaut, 27 février 2014, 19:58:35) - IPython 1.1.0 - timeit: (github gist)
def diff(a, b):
b = set(b)
return [aa for aa in a if aa not in b]
def set_diff(a, b):
return list(set(a) - set(b))
diff_lamb_hension = lambda l1,l2: [x for x in l1 if x not in l2]
diff_lamb_filter = lambda l1,l2: filter(lambda x: x not in l2, l1)
from difflib import SequenceMatcher
def squeezer(a, b):
squeeze = SequenceMatcher(None, a, b)
return reduce(lambda p,q: p+q, map(
lambda t: squeeze.a[t[1]:t[2]],
filter(lambda x:x[0]!='equal',
squeeze.get_opcodes())))
Résultats:
# Small
a = range(10)
b = range(10/2)
timeit[diff(a, b)]
100000 loops, best of 3: 1.97 µs per loop
timeit[set_diff(a, b)]
100000 loops, best of 3: 2.71 µs per loop
timeit[diff_lamb_hension(a, b)]
100000 loops, best of 3: 2.1 µs per loop
timeit[diff_lamb_filter(a, b)]
100000 loops, best of 3: 3.58 µs per loop
timeit[squeezer(a, b)]
10000 loops, best of 3: 36 µs per loop
# Medium
a = range(10**4)
b = range(10**4/2)
timeit[diff(a, b)]
1000 loops, best of 3: 1.17 ms per loop
timeit[set_diff(a, b)]
1000 loops, best of 3: 1.27 ms per loop
timeit[diff_lamb_hension(a, b)]
1 loops, best of 3: 736 ms per loop
timeit[diff_lamb_filter(a, b)]
1 loops, best of 3: 732 ms per loop
timeit[squeezer(a, b)]
100 loops, best of 3: 12.8 ms per loop
# Big
a = xrange(10**7)
b = xrange(10**7/2)
timeit[diff(a, b)]
1 loops, best of 3: 1.74 s per loop
timeit[set_diff(a, b)]
1 loops, best of 3: 2.57 s per loop
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# too long to wait for
timeit[diff_lamb_filter(a, b)]
# TypeError: sequence index must be integer, not 'slice'
@ rom-bodnarchuk list comprehensions function def diff (a, b) semble être plus rapide.
A = [1,2,3,4]
B = [2,5]
#A - B
x = list(set(A) - set(B))
#B - A
y = list(set(B) - set(A))
print x
print y
Vous voudriez utiliser un set
au lieu d'un list
.
Dans le cas où vous souhaitez que la différence rentre profondément dans les éléments de votre liste, j'ai écrit un package pour python: https://github.com/erasmose/deepdiff
Installer depuis PyPi:
pip install deepdiff
Si vous êtes Python3, vous devez également installer:
pip install future six
>>> from deepdiff import DeepDiff
>>> from pprint import pprint
>>> from __future__ import print_function
Le même objet revient vide
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = t1
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{}
Le type d'un article a changé
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:"2", 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'type_changes': ["root[2]: 2=<type 'int'> vs. 2=<type 'str'>"]}
La valeur d'un article a changé
>>> t1 = {1:1, 2:2, 3:3}
>>> t2 = {1:1, 2:4, 3:3}
>>> ddiff = DeepDiff(t1, t2)
>>> print (ddiff.changes)
{'values_changed': ['root[2]: 2 ====>> 4']}
Élément ajouté et / ou supprimé
>>> t1 = {1:1, 2:2, 3:3, 4:4}
>>> t2 = {1:1, 2:4, 3:3, 5:5, 6:6}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes)
{'dic_item_added': ['root[5, 6]'],
'dic_item_removed': ['root[4]'],
'values_changed': ['root[2]: 2 ====>> 4']}
Différence de chaîne
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world"}}
>>> t2 = {1:1, 2:4, 3:3, 4:{"a":"hello", "b":"world!"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ 'root[2]: 2 ====>> 4',
"root[4]['b']:\n--- \n+++ \n@@ -1 +1 @@\n-world\n+world!"]}
>>>
>>> print (ddiff.changes['values_changed'][1])
root[4]['b']:
---
+++
@@ -1 +1 @@
-world
+world!
Différence de chaîne 2
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world!\nGoodbye!\n1\n2\nEnd"}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n1\n2\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'values_changed': [ "root[4]['b']:\n--- \n+++ \n@@ -1,5 +1,4 @@\n-world!\n-Goodbye!\n+world\n 1\n 2\n End"]}
>>>
>>> print (ddiff.changes['values_changed'][0])
root[4]['b']:
---
+++
@@ -1,5 +1,4 @@
-world!
-Goodbye!
+world
1
2
End
Changement de type
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":"world\n\n\nEnd"}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'type_changes': [ "root[4]['b']: [1, 2, 3]=<type 'list'> vs. world\n\n\nEnd=<type 'str'>"]}
Liste des différences
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'list_removed': ["root[4]['b']: [3]"]}
Énumérez la différence 2: notez qu'elle ne tient pas compte de l'ordre
>>> # Note that it DOES NOT take order into account
... t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, 3]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 3, 2]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ }
Liste contenant le dictionnaire:
>>> t1 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:1, 2:2}]}}
>>> t2 = {1:1, 2:2, 3:3, 4:{"a":"hello", "b":[1, 2, {1:3}]}}
>>> ddiff = DeepDiff(t1, t2)
>>> pprint (ddiff.changes, indent = 2)
{ 'dic_item_removed': ["root[4]['b'][2][2]"],
'values_changed': ["root[4]['b'][2][1]: 1 ====>> 3"]}
moyen le plus simple,
utilisez set (). difference (set ())
list_a = [1,2,3]
list_b = [2,3]
print set(list_a).difference(set(list_b))
la réponse est set([1])
Dans le cas d'une liste de dictionnaires , la solution de compréhension de liste complète fonctionne pendant que la set
solution soulève
TypeError: unhashable type: 'dict'
def diff(a, b):
return [aa for aa in a if aa not in b]
d1 = {"a":1, "b":1}
d2 = {"a":2, "b":2}
d3 = {"a":3, "b":3}
>>> diff([d1, d2, d3], [d2, d3])
[{'a': 1, 'b': 1}]
>>> diff([d1, d2, d3], [d1])
[{'a': 2, 'b': 2}, {'a': 3, 'b': 3}]
Lorsque l'on regarde TimeComplexity of In-operator, dans le pire des cas, cela fonctionne avec O (n). Même pour les ensembles.
Ainsi, lorsque nous comparons deux tableaux, nous aurons une TimeComplexity de O (n) dans le meilleur des cas et O (n ^ 2) dans le pire des cas.
Une solution alternative (mais malheureusement plus complexe), qui fonctionne avec O (n) dans le meilleur et le pire des cas est celle-ci:
# Compares the difference of list a and b
# uses a callback function to compare items
def diff(a, b, callback):
a_missing_in_b = []
ai = 0
bi = 0
a = sorted(a, callback)
b = sorted(b, callback)
while (ai < len(a)) and (bi < len(b)):
cmp = callback(a[ai], b[bi])
if cmp < 0:
a_missing_in_b.append(a[ai])
ai += 1
elif cmp > 0:
# Item b is missing in a
bi += 1
else:
# a and b intersecting on this item
ai += 1
bi += 1
# if a and b are not of same length, we need to add the remaining items
for ai in xrange(ai, len(a)):
a_missing_in_b.append(a[ai])
return a_missing_in_b
par exemple
>>> a=[1,2,3]
>>> b=[2,4,6]
>>> diff(a, b, cmp)
[1, 3]
set(b)
pour vous assurer que l'algorithme est O (nlogn) au lieu de Theta (n ^ 2)