Il y a un petit commentaire à la fin de l' introduction de la documentation SciPy :
Une autre commande utile est source
. Lorsqu'une fonction écrite en Python est donnée comme argument, elle affiche une liste du code source de cette fonction. Cela peut être utile pour découvrir un algorithme ou comprendre exactement ce qu'une fonction fait avec ses arguments. N'oubliez pas non plus le répertoire de commande Python qui peut être utilisé pour regarder l'espace de noms d'un module ou d'un package.
Je pense que cela permettra à quelqu'un ayant suffisamment de connaissances de tous les packages impliqués de choisir exactement les différences entre certaines fonctions scipy et numpy (cela ne m'a pas du tout aidé avec la question log10). Je n'ai certainement pas cette connaissance mais l' source
indique scipy.linalg.solve
et numpy.linalg.solve
interagis avec lapack de différentes manières;
Python 2.4.3 (#1, May 5 2011, 18:44:23)
[GCC 4.1.2 20080704 (Red Hat 4.1.2-50)] on linux2
>>> import scipy
>>> import scipy.linalg
>>> import numpy
>>> scipy.source(scipy.linalg.solve)
In file: /usr/lib64/python2.4/site-packages/scipy/linalg/basic.py
def solve(a, b, sym_pos=0, lower=0, overwrite_a=0, overwrite_b=0,
debug = 0):
""" solve(a, b, sym_pos=0, lower=0, overwrite_a=0, overwrite_b=0) -> x
Solve a linear system of equations a * x = b for x.
Inputs:
a -- An N x N matrix.
b -- An N x nrhs matrix or N vector.
sym_pos -- Assume a is symmetric and positive definite.
lower -- Assume a is lower triangular, otherwise upper one.
Only used if sym_pos is true.
overwrite_y - Discard data in y, where y is a or b.
Outputs:
x -- The solution to the system a * x = b
"""
a1, b1 = map(asarray_chkfinite,(a,b))
if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
raise ValueError, 'expected square matrix'
if a1.shape[0] != b1.shape[0]:
raise ValueError, 'incompatible dimensions'
overwrite_a = overwrite_a or (a1 is not a and not hasattr(a,'__array__'))
overwrite_b = overwrite_b or (b1 is not b and not hasattr(b,'__array__'))
if debug:
print 'solve:overwrite_a=',overwrite_a
print 'solve:overwrite_b=',overwrite_b
if sym_pos:
posv, = get_lapack_funcs(('posv',),(a1,b1))
c,x,info = posv(a1,b1,
lower = lower,
overwrite_a=overwrite_a,
overwrite_b=overwrite_b)
else:
gesv, = get_lapack_funcs(('gesv',),(a1,b1))
lu,piv,x,info = gesv(a1,b1,
overwrite_a=overwrite_a,
overwrite_b=overwrite_b)
if info==0:
return x
if info>0:
raise LinAlgError, "singular matrix"
raise ValueError,\
'illegal value in %-th argument of internal gesv|posv'%(-info)
>>> scipy.source(numpy.linalg.solve)
In file: /usr/lib64/python2.4/site-packages/numpy/linalg/linalg.py
def solve(a, b):
"""
Solve the equation ``a x = b`` for ``x``.
Parameters
----------
a : array_like, shape (M, M)
Input equation coefficients.
b : array_like, shape (M,)
Equation target values.
Returns
-------
x : array, shape (M,)
Raises
------
LinAlgError
If `a` is singular or not square.
Examples
--------
Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``:
>>> a = np.array([[3,1], [1,2]])
>>> b = np.array([9,8])
>>> x = np.linalg.solve(a, b)
>>> x
array([ 2., 3.])
Check that the solution is correct:
>>> (np.dot(a, x) == b).all()
True
"""
a, _ = _makearray(a)
b, wrap = _makearray(b)
one_eq = len(b.shape) == 1
if one_eq:
b = b[:, newaxis]
_assertRank2(a, b)
_assertSquareness(a)
n_eq = a.shape[0]
n_rhs = b.shape[1]
if n_eq != b.shape[0]:
raise LinAlgError, 'Incompatible dimensions'
t, result_t = _commonType(a, b)
# lapack_routine = _findLapackRoutine('gesv', t)
if isComplexType(t):
lapack_routine = lapack_lite.zgesv
else:
lapack_routine = lapack_lite.dgesv
a, b = _fastCopyAndTranspose(t, a, b)
pivots = zeros(n_eq, fortran_int)
results = lapack_routine(n_eq, n_rhs, a, n_eq, pivots, b, n_eq, 0)
if results['info'] > 0:
raise LinAlgError, 'Singular matrix'
if one_eq:
return wrap(b.ravel().astype(result_t))
else:
return wrap(b.transpose().astype(result_t))
C'est aussi mon premier article, donc si je devais changer quelque chose ici, faites le moi savoir.
all of those functions are available without additionally importing Numpy
parce quethe intention is for users not to have to know the distinction between the scipy and numpy namespaces
. Maintenant, je me demande, parce que je suis un peu les articles sur numpy et scipy et que je l'utilise moi-même. Et je vois presque toujours numpy importé séparément (comme np). Alors ils ont échoué?