Taille hexadécimale dans les hexbins matplotlib basée sur la densité des points voisins


9

J'ai le code suivant qui produit la figure suivante

import numpy as np
np.random.seed(3)
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame()
df['X'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))
df['Y'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))

df['Bin'] = df.apply(lambda row: .1 if row['X'] < 30 and row['Y'] < 30 else .9, axis=1)

fig, ax = plt.subplots(figsize=(10,10))
plt.scatter(df['X'], df['Y'])

dispersion

J'ai représenté graphiquement les données à l'aide d'hexbins, comme indiqué ci-dessous

from matplotlib import cm

fig, ax = plt.subplots(figsize=(10,10))
hexbin = ax.hexbin(df['X'], df['Y'], C=df['Bin'], gridsize=20, cmap= cm.get_cmap('RdYlBu_r'),edgecolors='black')
plt.show()

hexbins

Je voudrais changer la taille des hexagones en fonction de la densité des points tracés dans la zone couverte par un hexagone. Par exemple, les hexagones en bas à gauche (où les points sont compacts) seront plus grands que les hexagones partout ailleurs (où les points sont clairsemés). Y a-t-il un moyen de faire cela?

Edit: J'ai essayé cette solution , mais je ne peux pas comprendre comment colorer les hexs en fonction de df ['Bin'], ou comment définir la taille hexadécimale min et max.

from matplotlib.collections import PatchCollection
from matplotlib.path import Path
from matplotlib.patches import PathPatch
fig, ax = plt.subplots(figsize=(10,10))
hexbin = ax.hexbin(df['X'], df['Y'], C=df['Bins'], gridsize=20, cmap= cm.get_cmap('RdYlBu_r'),edgecolors='black')
def sized_hexbin(ax,hc):
    offsets = hc.get_offsets()
    orgpath = hc.get_paths()[0]
    verts = orgpath.vertices
    values = hc.get_array()
    ma = values.max()
    patches = []
    for offset,val in zip(offsets,values):
        v1 = verts*val/ma+offset
        path = Path(v1, orgpath.codes)
        patch = PathPatch(path)
        patches.append(patch)

    pc = PatchCollection(patches, cmap=cm.get_cmap('RdYlBu_r'), edgecolors='black')
    pc.set_array(values)
    ax.add_collection(pc)
    hc.remove()

sized_hexbin(ax,hexbin)
plt.show()

solution proposée



@ plasmon360 J'ai mis à jour le message avec mon travail à partir de la solution proposée
Ethan

1
Lorsque vous l'utilisez C=df['Bin'],, la densité ne s'affiche pas, mais la quantité qui se trouve dans la Bincolonne. L'intrigue est donc correcte. Vous pouvez laisser de côté l' Cargument et obtenir les tailles en fonction de la densité.
ImportanceOfBeingErnest

@ImportanceOfBeingErnest ok, gotcha. Comment puis-je colorer les hexs par le df ['Bin']? J'aimerais aussi pouvoir changer la taille min des hexagones pour qu'elle soit un peu plus grande, est-ce possible?
Ethan

1
La taille est déterminée par le rapport val/madans le code. Vous pouvez le remplacer par tout ce que vous trouvez approprié. Les couleurs sont définies via pc.set_array(values); vous pouvez utiliser autre chose que valuesbien sûr.
ImportanceOfBeingErnest

Réponses:


3

Vous voudrez peut-être passer un certain temps à comprendre le mappage des couleurs.

    import numpy as np
    np.random.seed(3)
    import pandas as pd
    import matplotlib.pyplot as plt
    from matplotlib.collections import PatchCollection
    from matplotlib.path import Path
    from matplotlib.patches import PathPatch
    df = pd.DataFrame()
    df['X'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))
    df['Y'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))

    df['Bin'] = df.apply(lambda row: .1 if row['X'] < 30 and row['Y'] < 30 else .9, axis=1)

    #fig, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True)
    ax1 = plt.scatter(df['X'], df['Y'])

    fig,ax2 = plt.subplots(figsize=(10,10))
    hexbin = ax2.hexbin(df['X'], df['Y'], C=df['Bin'], gridsize=20,edgecolors='black',cmap= 'RdBu', reduce_C_function=np.bincount) #**

    def sized_hexbin(ax,hc):
        offsets = hc.get_offsets()
        orgpath = hc.get_paths()[0]
        verts = orgpath.vertices
        values = hc.get_array()
        ma = values.max()
        patches = []
        for offset,val in zip(offsets,values):
            v1 = verts*val/ma + offset
            path = Path(v1, orgpath.codes)
            patch = PathPatch(path)
            patches.append(patch)

        pc = PatchCollection(patches, cmap= 'RdBu', edgecolors='black')
        pc.set_array(values)

        ax.add_collection(pc)

        hc.remove()

    sized_hexbin(ax2,hexbin)
    cb = plt.colorbar(hexbin, ax=ax2)

    plt.show()

To plot the chart based on df['bins'] values - 

Need to change the reduce_C_function in #** marked line -

    hexbin = ax2.hexbin(df['X'], df['Y'], C=df['Bin'], gridsize=20,edgecolors='black',cmap= 'RdBu', reduce_C_function=np.sum)

[![enter image description here][2]][2]


  [1]: https://i.stack.imgur.com/kv0U4.png
  [2]: https://i.stack.imgur.com/mb0gD.png

# Another variation of the chart :

# Where size is based on count of points in the bins and color is based on values of the df['bin']./ Also added if condition to control minimum hexbin size.


import numpy as np
np.random.seed(3)
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.path import Path
from matplotlib.patches import PathPatch
from functools import partial

mycmp = 'coolwarm'

df = pd.DataFrame()
df['X'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))
df['Y'] = list(np.random.randint(100, size=100)) + list(np.random.randint(30, size=100))

df['Bin'] = df.apply(lambda row: .1 if row['X'] < 30 and row['Y'] < 30 else .9, axis=1)

#fig, ((ax1, ax2)) = plt.subplots(1, 2, sharex=True, sharey=True)
ax1 = plt.scatter(df['X'], df['Y'])


fig,ax2 = plt.subplots(figsize=(10,10))
hexbin = ax2.hexbin(df['X'], df['Y'], C=df['Bin'], gridsize=15,edgecolors='black',cmap= newcmp , reduce_C_function=np.bincount)
hexbin2 = ax2.hexbin(df['X'], df['Y'], C=df['Bin'], gridsize=15,edgecolors='black',cmap= newcmp , reduce_C_function=np.mean)

def sized_hexbin(ax,hc,hc2):
    offsets = hc.get_offsets()
    orgpath = hc.get_paths()[0]
    verts = orgpath.vertices
    values1 = hc.get_array()
    values2 = hc2.get_array()
    ma = values1.max()
    patches = []

    for offset,val in zip(offsets,values1):
        # Adding condition for minimum size 
        if (val/ma) < 0.2:
            val_t = 0.2
        else:
            val_t = val/ma
        v1 =  verts*val_t + offset
        path = Path(v1, orgpath.codes)
        print(path)
        patch = PathPatch(path)
        patches.append(patch)

    pc = PatchCollection(patches, cmap=  newcmp)  #edgecolors='black'
    pc.set_array(values2)

    ax.add_collection(pc)
    hc.remove()
    hc2.remove()


sized_hexbin(ax2,hexbin,hexbin2)
cb = plt.colorbar(hexbin2, ax=ax2)

plt.xlim((-5, 100))
plt.ylim((-5, 100))

plt.show()

entrez la description de l'image ici

entrez la description de l'image ici

entrez la description de l'image ici


Comment puis-je changer la couleur en fonction de la df['Bin']colonne?
Ethan

Vous ne voulez donc pas voir la fréquence en hexbin mais la somme des valeurs df ['Bin']?
perdu le

Oui, je veux que la couleur des hexagones soit basée sur la df['Bin']colonne, donc les hexs en bas à gauche sont bleus et les autres sont rouges
Ethan

J'ai ajouté un tracé basé sur la somme des df ["Bins"]. Vous pouvez modifier la cmap pour gérer les couleurs. Je ne sais pas si vous cherchez à faire autre chose.
perdu le

Je ne veux pas le colorer en fonction de la somme des valeurs dans le bac, au lieu de la valeur du bac lui-même. Y-a-t-il un moyen de faire ça? Les couleurs correspondraient aux couleurs du deuxième tracé de mon exemple
Ethan
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.