Je travaille actuellement sur une méthode bayésienne qui nécessite plusieurs étapes d'optimisation d'un modèle logit multinomial par itération. J'utilise optim () pour effectuer ces optimisations, et une fonction objective écrite en R. Un profilage a révélé qu'optim () est le principal goulot d'étranglement.
Après avoir fouillé, j'ai trouvé cette question dans laquelle ils suggèrent que le recodage de la fonction objectif Rcpp
pourrait accélérer le processus. J'ai suivi la suggestion et recodé ma fonction d'objectif avec Rcpp
, mais cela a fini par être plus lent (environ deux fois plus lent!).
C'était ma première fois avec Rcpp
(ou quoi que ce soit lié à C ++) et je n'ai pas pu trouver un moyen de vectoriser le code. Une idée de comment l'accélérer?
Tl; dr: L'implémentation actuelle de la fonction dans Rcpp n'est pas aussi rapide que R vectorisée; comment le rendre plus rapide?
Un exemple reproductible :
1) Définir les fonctions objectives dans R
et Rcpp
: log-vraisemblance d'un modèle multinomial d'interception uniquement
library(Rcpp)
library(microbenchmark)
llmnl_int <- function(beta, Obs, n_cat) {
n_Obs <- length(Obs)
Xint <- matrix(c(0, beta), byrow = T, ncol = n_cat, nrow = n_Obs)
ind <- cbind(c(1:n_Obs), Obs)
Xby <- Xint[ind]
Xint <- exp(Xint)
iota <- c(rep(1, (n_cat)))
denom <- log(Xint %*% iota)
return(sum(Xby - denom))
}
cppFunction('double llmnl_int_C(NumericVector beta, NumericVector Obs, int n_cat) {
int n_Obs = Obs.size();
NumericVector betas = (beta.size()+1);
for (int i = 1; i < n_cat; i++) {
betas[i] = beta[i-1];
};
NumericVector Xby = (n_Obs);
NumericMatrix Xint(n_Obs, n_cat);
NumericVector denom = (n_Obs);
for (int i = 0; i < Xby.size(); i++) {
Xint(i,_) = betas;
Xby[i] = Xint(i,Obs[i]-1.0);
Xint(i,_) = exp(Xint(i,_));
denom[i] = log(sum(Xint(i,_)));
};
return sum(Xby - denom);
}')
2) Comparez leur efficacité:
## Draw sample from a multinomial distribution
set.seed(2020)
mnl_sample <- t(rmultinom(n = 1000,size = 1,prob = c(0.3, 0.4, 0.2, 0.1)))
mnl_sample <- apply(mnl_sample,1,function(r) which(r == 1))
## Benchmarking
microbenchmark("llmml_int" = llmnl_int(beta = c(4,2,1), Obs = mnl_sample, n_cat = 4),
"llmml_int_C" = llmnl_int_C(beta = c(4,2,1), Obs = mnl_sample, n_cat = 4),
times = 100)
## Results
# Unit: microseconds
# expr min lq mean median uq max neval
# llmnl_int 76.809 78.6615 81.9677 79.7485 82.8495 124.295 100
# llmnl_int_C 155.405 157.7790 161.7677 159.2200 161.5805 201.655 100
3) Maintenant, appelez-les optim
:
## Benchmarking with optim
microbenchmark("llmnl_int" = optim(c(4,2,1), llmnl_int, Obs = mnl_sample, n_cat = 4, method = "BFGS", hessian = T, control = list(fnscale = -1)),
"llmnl_int_C" = optim(c(4,2,1), llmnl_int_C, Obs = mnl_sample, n_cat = 4, method = "BFGS", hessian = T, control = list(fnscale = -1)),
times = 100)
## Results
# Unit: milliseconds
# expr min lq mean median uq max neval
# llmnl_int 12.49163 13.26338 15.74517 14.12413 18.35461 26.58235 100
# llmnl_int_C 25.57419 25.97413 28.05984 26.34231 30.44012 37.13442 100
J'ai été quelque peu surpris que l'implémentation vectorisée dans R soit plus rapide. La mise en œuvre d'une version plus efficace dans Rcpp (par exemple, avec RcppArmadillo?) Peut produire des gains? Est-ce une meilleure idée de tout recoder dans Rcpp en utilisant un optimiseur C ++?
PS: première publication sur Stackoverflow!
Obs
comme uneIntegerVector
suppression de certains lancers.