J'ai un programme avec une figure interactive où de temps en temps de nombreux artistes sont dessinés. Dans cette figure, vous pouvez également zoomer et effectuer un panoramique à l'aide de la souris. Cependant, la performance lors du zoom d'un panoramique n'est pas très bonne car chaque artiste est toujours redessiné. Existe-t-il un moyen de vérifier quels artistes se trouvent dans la zone actuellement affichée et de les redessiner uniquement? (Dans l'exemple ci-dessous, la perfomace est encore relativement bonne, mais elle peut être arbitrairement aggravée en utilisant des artistes plus ou plus complexes)
J'ai eu un problème de performance similaire avec la hover
méthode qui, à chaque fois qu'elle était appelée, s'exécutait canvas.draw()
à la fin. Mais comme vous pouvez le voir, j'ai trouvé une solution de contournement pour cela en utilisant la mise en cache et la restauration de l'arrière-plan des axes (sur la base de cela ). Cela a considérablement amélioré la performance et maintenant, même avec de nombreux artistes, cela fonctionne très bien. Peut-être existe-t-il une manière similaire de procéder, mais pour la méthode pan
et zoom
?
Désolé pour l'exemple de code long, la plupart n'est pas directement pertinent pour la question mais nécessaire pour un exemple de travail pour mettre en évidence le problème.
ÉDITER
J'ai mis à jour le MWE vers quelque chose qui est plus représentatif de mon code actuel.
import numpy as np
import numpy as np
import sys
import matplotlib.pyplot as plt
from matplotlib.backends.backend_qt5agg import \
FigureCanvasQTAgg
import matplotlib.patheffects as PathEffects
from matplotlib.text import Annotation
from matplotlib.collections import LineCollection
from PyQt5.QtWidgets import QApplication, QVBoxLayout, QDialog
def check_limits(base_xlim, base_ylim, new_xlim, new_ylim):
if new_xlim[0] < base_xlim[0]:
overlap = base_xlim[0] - new_xlim[0]
new_xlim[0] = base_xlim[0]
if new_xlim[1] + overlap > base_xlim[1]:
new_xlim[1] = base_xlim[1]
else:
new_xlim[1] += overlap
if new_xlim[1] > base_xlim[1]:
overlap = new_xlim[1] - base_xlim[1]
new_xlim[1] = base_xlim[1]
if new_xlim[0] - overlap < base_xlim[0]:
new_xlim[0] = base_xlim[0]
else:
new_xlim[0] -= overlap
if new_ylim[1] < base_ylim[1]:
overlap = base_ylim[1] - new_ylim[1]
new_ylim[1] = base_ylim[1]
if new_ylim[0] + overlap > base_ylim[0]:
new_ylim[0] = base_ylim[0]
else:
new_ylim[0] += overlap
if new_ylim[0] > base_ylim[0]:
overlap = new_ylim[0] - base_ylim[0]
new_ylim[0] = base_ylim[0]
if new_ylim[1] - overlap < base_ylim[1]:
new_ylim[1] = base_ylim[1]
else:
new_ylim[1] -= overlap
return new_xlim, new_ylim
class FigureCanvas(FigureCanvasQTAgg):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.bg_cache = None
def draw(self):
ax = self.figure.axes[0]
hid_annotation = False
if ax.annot.get_visible():
ax.annot.set_visible(False)
hid_annotation = True
hid_highlight = False
if ax.last_artist:
ax.last_artist.set_path_effects([PathEffects.Normal()])
hid_highlight = True
super().draw()
self.bg_cache = self.copy_from_bbox(self.figure.bbox)
if hid_highlight:
ax.last_artist.set_path_effects(
[PathEffects.withStroke(
linewidth=7, foreground="c", alpha=0.4
)]
)
ax.draw_artist(ax.last_artist)
if hid_annotation:
ax.annot.set_visible(True)
ax.draw_artist(ax.annot)
if hid_highlight:
self.update()
def position(t_, coeff, var=0.1):
x_ = np.random.normal(np.polyval(coeff[:, 0], t_), var)
y_ = np.random.normal(np.polyval(coeff[:, 1], t_), var)
return x_, y_
class Data:
def __init__(self, times):
self.length = np.random.randint(1, 20)
self.t = np.sort(
np.random.choice(times, size=self.length, replace=False)
)
self.vel = [np.random.uniform(-2, 2), np.random.uniform(-2, 2)]
self.accel = [np.random.uniform(-0.01, 0.01), np.random.uniform(-0.01,
0.01)]
x0, y0 = np.random.uniform(0, 1000, 2)
self.x, self.y = position(
self.t, np.array([self.accel, self.vel, [x0, y0]])
)
class Test(QDialog):
def __init__(self):
super().__init__()
self.fig, self.ax = plt.subplots()
self.canvas = FigureCanvas(self.fig)
self.artists = []
self.zoom_factor = 1.5
self.x_press = None
self.y_press = None
self.annot = Annotation(
"", xy=(0, 0), xytext=(-20, 20), textcoords="offset points",
bbox=dict(boxstyle="round", fc="w", alpha=0.7), color='black',
arrowprops=dict(arrowstyle="->"), zorder=6, visible=False,
annotation_clip=False, in_layout=False,
)
self.annot.set_clip_on(False)
setattr(self.ax, 'annot', self.annot)
self.ax.add_artist(self.annot)
self.last_artist = None
setattr(self.ax, 'last_artist', self.last_artist)
self.image = np.random.uniform(0, 100, 1000000).reshape((1000, 1000))
self.ax.imshow(self.image, cmap='gray', interpolation='nearest')
self.times = np.linspace(0, 20)
for i in range(1000):
data = Data(self.times)
points = np.array([data.x, data.y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
z = np.linspace(0, 1, data.length)
norm = plt.Normalize(z.min(), z.max())
lc = LineCollection(
segments, cmap='autumn', norm=norm, alpha=1,
linewidths=2, picker=8, capstyle='round',
joinstyle='round'
)
setattr(lc, 'data_id', i)
lc.set_array(z)
self.ax.add_artist(lc)
self.artists.append(lc)
self.default_xlim = self.ax.get_xlim()
self.default_ylim = self.ax.get_ylim()
self.canvas.draw()
self.cid_motion = self.fig.canvas.mpl_connect(
'motion_notify_event', self.motion_event
)
self.cid_button = self.fig.canvas.mpl_connect(
'button_press_event', self.pan_press
)
self.cid_zoom = self.fig.canvas.mpl_connect(
'scroll_event', self.zoom
)
layout = QVBoxLayout()
layout.addWidget(self.canvas)
self.setLayout(layout)
def zoom(self, event):
if event.inaxes == self.ax:
scale_factor = np.power(self.zoom_factor, -event.step)
xdata = event.xdata
ydata = event.ydata
cur_xlim = self.ax.get_xlim()
cur_ylim = self.ax.get_ylim()
x_left = xdata - cur_xlim[0]
x_right = cur_xlim[1] - xdata
y_top = ydata - cur_ylim[0]
y_bottom = cur_ylim[1] - ydata
new_xlim = [
xdata - x_left * scale_factor, xdata + x_right * scale_factor
]
new_ylim = [
ydata - y_top * scale_factor, ydata + y_bottom * scale_factor
]
# intercept new plot parameters if they are out of bounds
new_xlim, new_ylim = check_limits(
self.default_xlim, self.default_ylim, new_xlim, new_ylim
)
if cur_xlim != tuple(new_xlim) or cur_ylim != tuple(new_ylim):
self.ax.set_xlim(new_xlim)
self.ax.set_ylim(new_ylim)
self.canvas.draw_idle()
def motion_event(self, event):
if event.button == 1:
self.pan_move(event)
else:
self.hover(event)
def pan_press(self, event):
if event.inaxes == self.ax:
self.x_press = event.xdata
self.y_press = event.ydata
def pan_move(self, event):
if event.inaxes == self.ax:
xdata = event.xdata
ydata = event.ydata
cur_xlim = self.ax.get_xlim()
cur_ylim = self.ax.get_ylim()
dx = xdata - self.x_press
dy = ydata - self.y_press
new_xlim = [cur_xlim[0] - dx, cur_xlim[1] - dx]
new_ylim = [cur_ylim[0] - dy, cur_ylim[1] - dy]
# intercept new plot parameters that are out of bound
new_xlim, new_ylim = check_limits(
self.default_xlim, self.default_ylim, new_xlim, new_ylim
)
if cur_xlim != tuple(new_xlim) or cur_ylim != tuple(new_ylim):
self.ax.set_xlim(new_xlim)
self.ax.set_ylim(new_ylim)
self.canvas.draw_idle()
def update_annot(self, event, artist):
self.ax.annot.xy = (event.xdata, event.ydata)
text = f'Data #{artist.data_id}'
self.ax.annot.set_text(text)
self.ax.annot.set_visible(True)
self.ax.draw_artist(self.ax.annot)
def hover(self, event):
vis = self.ax.annot.get_visible()
if event.inaxes == self.ax:
ind = 0
cont = None
while (
ind in range(len(self.artists))
and not cont
):
artist = self.artists[ind]
cont, _ = artist.contains(event)
if cont and artist is not self.ax.last_artist:
if self.ax.last_artist is not None:
self.canvas.restore_region(self.canvas.bg_cache)
self.ax.last_artist.set_path_effects(
[PathEffects.Normal()]
)
self.ax.last_artist = None
artist.set_path_effects(
[PathEffects.withStroke(
linewidth=7, foreground="c", alpha=0.4
)]
)
self.ax.last_artist = artist
self.ax.draw_artist(self.ax.last_artist)
self.update_annot(event, self.ax.last_artist)
ind += 1
if vis and not cont and self.ax.last_artist:
self.canvas.restore_region(self.canvas.bg_cache)
self.ax.last_artist.set_path_effects([PathEffects.Normal()])
self.ax.last_artist = None
self.ax.annot.set_visible(False)
elif vis:
self.canvas.restore_region(self.canvas.bg_cache)
self.ax.last_artist.set_path_effects([PathEffects.Normal()])
self.ax.last_artist = None
self.ax.annot.set_visible(False)
self.canvas.update()
self.canvas.flush_events()
if __name__ == '__main__':
app = QApplication(sys.argv)
test = Test()
test.show()
sys.exit(app.exec_())
plot
avec tous les points, le problème ne se produirait pas.