Je sais que les objectcolonnes typerendent les données difficiles à convertir avec une pandasfonction. Lorsque j'ai reçu des données comme celles-ci, la première chose qui m'est venue à l'esprit a été d '«aplatir» ou de désnoisonner les colonnes.
J'utilise pandaset des pythonfonctions pour ce type de question. Si vous vous inquiétez de la vitesse des solutions ci-dessus, consultez la réponse de user3483203 , car il utilise numpyet la plupart du temps numpyest plus rapide. Je recommande Cpythonet numbasi la vitesse compte.
Méthode 0 [pandas> = 0.25]
À partir de pandas 0.25 , si vous n'avez besoin d'exploser qu'une colonne, vous pouvez utiliser la pandas.DataFrame.explodefonction:
df.explode('B')
A B
0 1 1
1 1 2
0 2 1
1 2 2
Étant donné un dataframe avec un vide listou un NaNdans la colonne. Une liste vide ne causera pas de problème, mais un NaNdevra être rempli avec unlist
df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [[1, 2], [1, 2], [], np.nan]})
df.B = df.B.fillna({i: [] for i in df.index}) # replace NaN with []
df.explode('B')
A B
0 1 1
0 1 2
1 2 1
1 2 2
2 3 NaN
3 4 NaN
Méthode 1
apply + pd.Series (facile à comprendre mais en termes de performances déconseillée.)
df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})
Out[463]:
A B
0 1 1
1 1 2
0 2 1
1 2 2
Méthode 2
En utilisant repeatavec le DataFrameconstructeur, recréez votre dataframe (bon pour les performances, pas bon pour plusieurs colonnes)
df=pd.DataFrame({'A':df.A.repeat(df.B.str.len()),'B':np.concatenate(df.B.values)})
df
Out[465]:
A B
0 1 1
0 1 2
1 2 1
1 2 2
Par
exemple, la méthode 2.1 en plus de A, nous avons A.1 ..... An Si nous utilisons toujours la méthode ( Méthode 2 ) ci-dessus, il nous est difficile de recréer les colonnes une par une.
Solution: joinou mergeavec la indexsuite 'unnest' les colonnes simples
s=pd.DataFrame({'B':np.concatenate(df.B.values)},index=df.index.repeat(df.B.str.len()))
s.join(df.drop('B',1),how='left')
Out[477]:
B A
0 1 1
0 2 1
1 1 2
1 2 2
Si vous avez besoin que l'ordre des colonnes soit exactement le même qu'avant, ajoutez reindexà la fin.
s.join(df.drop('B',1),how='left').reindex(columns=df.columns)
Méthode 3
recréer lelist
pd.DataFrame([[x] + [z] for x, y in df.values for z in y],columns=df.columns)
Out[488]:
A B
0 1 1
1 1 2
2 2 1
3 2 2
Si plus de deux colonnes, utilisez
s=pd.DataFrame([[x] + [z] for x, y in zip(df.index,df.B) for z in y])
s.merge(df,left_on=0,right_index=True)
Out[491]:
0 1 A B
0 0 1 1 [1, 2]
1 0 2 1 [1, 2]
2 1 1 2 [1, 2]
3 1 2 2 [1, 2]
Méthode 4 en
utilisant reindex ouloc
df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))
Out[554]:
A B
0 1 1
0 1 2
1 2 1
1 2 2
#df.loc[df.index.repeat(df.B.str.len())].assign(B=np.concatenate(df.B.values))
Méthode 5
lorsque la liste ne contient que des valeurs uniques:
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[3,4]]})
from collections import ChainMap
d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A'])))
pd.DataFrame(list(d.items()),columns=df.columns[::-1])
Out[574]:
B A
0 1 1
1 2 1
2 3 2
3 4 2
Méthode 6
utilisant numpypour de hautes performances:
newvalues=np.dstack((np.repeat(df.A.values,list(map(len,df.B.values))),np.concatenate(df.B.values)))
pd.DataFrame(data=newvalues[0],columns=df.columns)
A B
0 1 1
1 1 2
2 2 1
3 2 2
Méthode 7
utilisant la fonction de base itertools cycleet chain: Solution python pure juste pour le plaisir
from itertools import cycle,chain
l=df.values.tolist()
l1=[list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l]
pd.DataFrame(list(chain.from_iterable(l1)),columns=df.columns)
A B
0 1 1
1 1 2
2 2 1
3 2 2
Généralisation à plusieurs colonnes
df=pd.DataFrame({'A':[1,2],'B':[[1,2],[3,4]],'C':[[1,2],[3,4]]})
df
Out[592]:
A B C
0 1 [1, 2] [1, 2]
1 2 [3, 4] [3, 4]
Fonction self-def:
def unnesting(df, explode):
idx = df.index.repeat(df[explode[0]].str.len())
df1 = pd.concat([
pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1)
df1.index = idx
return df1.join(df.drop(explode, 1), how='left')
unnesting(df,['B','C'])
Out[609]:
B C A
0 1 1 1
0 2 2 1
1 3 3 2
1 4 4 2
Désincorporation par colonne
Toute la méthode ci-dessus parle du désemboîtement vertical et de l'explosion.Si vous avez besoin de dépenser la liste horizontalement , vérifiez avec le pd.DataFrameconstructeur
df.join(pd.DataFrame(df.B.tolist(),index=df.index).add_prefix('B_'))
Out[33]:
A B C B_0 B_1
0 1 [1, 2] [1, 2] 1 2
1 2 [3, 4] [3, 4] 3 4
Fonction mise à jour
def unnesting(df, explode, axis):
if axis==1:
idx = df.index.repeat(df[explode[0]].str.len())
df1 = pd.concat([
pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1)
df1.index = idx
return df1.join(df.drop(explode, 1), how='left')
else :
df1 = pd.concat([
pd.DataFrame(df[x].tolist(), index=df.index).add_prefix(x) for x in explode], axis=1)
return df1.join(df.drop(explode, 1), how='left')
Sortie de test
unnesting(df, ['B','C'], axis=0)
Out[36]:
B0 B1 C0 C1 A
0 1 2 1 2 1
1 3 4 3 4 2