Pour des exemples supplémentaires, voici tous les exemples de Java 8 Stream Tutorial convertis en Kotlin. Le titre de chaque exemple est dérivé de l'article source:
Comment fonctionnent les flux
// Java:
List<String> myList = Arrays.asList("a1", "a2", "b1", "c2", "c1");
myList.stream()
.filter(s -> s.startsWith("c"))
.map(String::toUpperCase)
.sorted()
.forEach(System.out::println);
// C1
// C2
// Kotlin:
val list = listOf("a1", "a2", "b1", "c2", "c1")
list.filter { it.startsWith('c') }.map (String::toUpperCase).sorted()
.forEach (::println)
Différents types de flux # 1
// Java:
Arrays.asList("a1", "a2", "a3")
.stream()
.findFirst()
.ifPresent(System.out::println);
// Kotlin:
listOf("a1", "a2", "a3").firstOrNull()?.apply(::println)
ou, créez une fonction d'extension sur String appelée ifPresent:
// Kotlin:
inline fun String?.ifPresent(thenDo: (String)->Unit) = this?.apply { thenDo(this) }
// now use the new extension function:
listOf("a1", "a2", "a3").firstOrNull().ifPresent(::println)
Voir aussi: apply()
fonction
Voir aussi: Fonctions d'extension
Voir aussi: ?.
Opérateur Safe Call , et en général nullabilité: dans Kotlin, quelle est la manière idiomatique de traiter les valeurs nullables, de les référencer ou de les convertir
Différents types de flux # 2
// Java:
Stream.of("a1", "a2", "a3")
.findFirst()
.ifPresent(System.out::println);
// Kotlin:
sequenceOf("a1", "a2", "a3").firstOrNull()?.apply(::println)
Différents types de flux # 3
// Java:
IntStream.range(1, 4).forEach(System.out::println);
// Kotlin: (inclusive range)
(1..3).forEach(::println)
Différents types de flux # 4
// Java:
Arrays.stream(new int[] {1, 2, 3})
.map(n -> 2 * n + 1)
.average()
.ifPresent(System.out::println); // 5.0
// Kotlin:
arrayOf(1,2,3).map { 2 * it + 1}.average().apply(::println)
Différents types de flux # 5
// Java:
Stream.of("a1", "a2", "a3")
.map(s -> s.substring(1))
.mapToInt(Integer::parseInt)
.max()
.ifPresent(System.out::println); // 3
// Kotlin:
sequenceOf("a1", "a2", "a3")
.map { it.substring(1) }
.map(String::toInt)
.max().apply(::println)
Différents types de flux # 6
// Java:
IntStream.range(1, 4)
.mapToObj(i -> "a" + i)
.forEach(System.out::println);
// a1
// a2
// a3
// Kotlin: (inclusive range)
(1..3).map { "a$it" }.forEach(::println)
Différents types de flux # 7
// Java:
Stream.of(1.0, 2.0, 3.0)
.mapToInt(Double::intValue)
.mapToObj(i -> "a" + i)
.forEach(System.out::println);
// a1
// a2
// a3
// Kotlin:
sequenceOf(1.0, 2.0, 3.0).map(Double::toInt).map { "a$it" }.forEach(::println)
Pourquoi la commande est importante
Cette section du didacticiel Java 8 Stream est la même pour Kotlin et Java.
Réutilisation des flux
Dans Kotlin, cela dépend du type de collection si elle peut être consommée plus d'une fois. A Sequence
génère un nouvel itérateur à chaque fois, et à moins qu'il n'affirme "utiliser une seule fois", il peut se réinitialiser au début chaque fois qu'il est actionné. Par conséquent, alors que ce qui suit échoue dans le flux Java 8, mais fonctionne dans Kotlin:
// Java:
Stream<String> stream =
Stream.of("d2", "a2", "b1", "b3", "c").filter(s -> s.startsWith("b"));
stream.anyMatch(s -> true); // ok
stream.noneMatch(s -> true); // exception
// Kotlin:
val stream = listOf("d2", "a2", "b1", "b3", "c").asSequence().filter { it.startsWith('b' ) }
stream.forEach(::println) // b1, b2
println("Any B ${stream.any { it.startsWith('b') }}") // Any B true
println("Any C ${stream.any { it.startsWith('c') }}") // Any C false
stream.forEach(::println) // b1, b2
Et en Java pour obtenir le même comportement:
// Java:
Supplier<Stream<String>> streamSupplier =
() -> Stream.of("d2", "a2", "b1", "b3", "c")
.filter(s -> s.startsWith("a"));
streamSupplier.get().anyMatch(s -> true); // ok
streamSupplier.get().noneMatch(s -> true); // ok
Par conséquent, dans Kotlin, le fournisseur des données décide s'il peut se réinitialiser et fournir un nouvel itérateur ou non. Mais si vous souhaitez contraindre intentionnellement une Sequence
itération à une fois, vous pouvez utiliser la constrainOnce()
fonction Sequence
comme suit:
val stream = listOf("d2", "a2", "b1", "b3", "c").asSequence().filter { it.startsWith('b' ) }
.constrainOnce()
stream.forEach(::println) // b1, b2
stream.forEach(::println) // Error:java.lang.IllegalStateException: This sequence can be consumed only once.
Opérations avancées
Collectez l'exemple n ° 5 (oui, j'ai sauté ceux déjà dans l'autre réponse)
// Java:
String phrase = persons
.stream()
.filter(p -> p.age >= 18)
.map(p -> p.name)
.collect(Collectors.joining(" and ", "In Germany ", " are of legal age."));
System.out.println(phrase);
// In Germany Max and Peter and Pamela are of legal age.
// Kotlin:
val phrase = persons.filter { it.age >= 18 }.map { it.name }
.joinToString(" and ", "In Germany ", " are of legal age.")
println(phrase)
// In Germany Max and Peter and Pamela are of legal age.
Et en remarque, dans Kotlin, nous pouvons créer des classes de données simples et instancier les données de test comme suit:
// Kotlin:
// data class has equals, hashcode, toString, and copy methods automagically
data class Person(val name: String, val age: Int)
val persons = listOf(Person("Tod", 5), Person("Max", 33),
Person("Frank", 13), Person("Peter", 80),
Person("Pamela", 18))
Collectez l'exemple n ° 6
// Java:
Map<Integer, String> map = persons
.stream()
.collect(Collectors.toMap(
p -> p.age,
p -> p.name,
(name1, name2) -> name1 + ";" + name2));
System.out.println(map);
// {18=Max, 23=Peter;Pamela, 12=David}
Ok, un cas plus intéressant ici pour Kotlin. D'abord les mauvaises réponses pour explorer les variantes de création d'un à Map
partir d'une collection / séquence:
// Kotlin:
val map1 = persons.map { it.age to it.name }.toMap()
println(map1)
// output: {18=Max, 23=Pamela, 12=David}
// Result: duplicates overridden, no exception similar to Java 8
val map2 = persons.toMap({ it.age }, { it.name })
println(map2)
// output: {18=Max, 23=Pamela, 12=David}
// Result: same as above, more verbose, duplicates overridden
val map3 = persons.toMapBy { it.age }
println(map3)
// output: {18=Person(name=Max, age=18), 23=Person(name=Pamela, age=23), 12=Person(name=David, age=12)}
// Result: duplicates overridden again
val map4 = persons.groupBy { it.age }
println(map4)
// output: {18=[Person(name=Max, age=18)], 23=[Person(name=Peter, age=23), Person(name=Pamela, age=23)], 12=[Person(name=David, age=12)]}
// Result: closer, but now have a Map<Int, List<Person>> instead of Map<Int, String>
val map5 = persons.groupBy { it.age }.mapValues { it.value.map { it.name } }
println(map5)
// output: {18=[Max], 23=[Peter, Pamela], 12=[David]}
// Result: closer, but now have a Map<Int, List<String>> instead of Map<Int, String>
Et maintenant pour la bonne réponse:
// Kotlin:
val map6 = persons.groupBy { it.age }.mapValues { it.value.joinToString(";") { it.name } }
println(map6)
// output: {18=Max, 23=Peter;Pamela, 12=David}
// Result: YAY!!
Nous avions juste besoin de joindre les valeurs correspondantes pour réduire les listes et fournir un transformateur jointToString
pour passer de l' Person
instance au Person.name
.
Collectez l'exemple n ° 7
Ok, celui-ci peut facilement être fait sans coutume Collector
, donc résolvons-le à la manière de Kotlin, puis inventons un nouvel exemple qui montre comment faire un processus similaire pour Collector.summarizingInt
lequel n'existe pas nativement dans Kotlin.
// Java:
Collector<Person, StringJoiner, String> personNameCollector =
Collector.of(
() -> new StringJoiner(" | "), // supplier
(j, p) -> j.add(p.name.toUpperCase()), // accumulator
(j1, j2) -> j1.merge(j2), // combiner
StringJoiner::toString); // finisher
String names = persons
.stream()
.collect(personNameCollector);
System.out.println(names); // MAX | PETER | PAMELA | DAVID
// Kotlin:
val names = persons.map { it.name.toUpperCase() }.joinToString(" | ")
Ce n'est pas ma faute, ils ont choisi un exemple trivial !!! Ok, voici une nouvelle summarizingInt
méthode pour Kotlin et un échantillon correspondant:
Exemple SummarizingInt
// Java:
IntSummaryStatistics ageSummary =
persons.stream()
.collect(Collectors.summarizingInt(p -> p.age));
System.out.println(ageSummary);
// IntSummaryStatistics{count=4, sum=76, min=12, average=19.000000, max=23}
// Kotlin:
// something to hold the stats...
data class SummaryStatisticsInt(var count: Int = 0,
var sum: Int = 0,
var min: Int = Int.MAX_VALUE,
var max: Int = Int.MIN_VALUE,
var avg: Double = 0.0) {
fun accumulate(newInt: Int): SummaryStatisticsInt {
count++
sum += newInt
min = min.coerceAtMost(newInt)
max = max.coerceAtLeast(newInt)
avg = sum.toDouble() / count
return this
}
}
// Now manually doing a fold, since Stream.collect is really just a fold
val stats = persons.fold(SummaryStatisticsInt()) { stats, person -> stats.accumulate(person.age) }
println(stats)
// output: SummaryStatisticsInt(count=4, sum=76, min=12, max=23, avg=19.0)
Mais il est préférable de créer une fonction d'extension, 2 pour faire correspondre les styles dans Kotlin stdlib:
// Kotlin:
inline fun Collection<Int>.summarizingInt(): SummaryStatisticsInt
= this.fold(SummaryStatisticsInt()) { stats, num -> stats.accumulate(num) }
inline fun <T: Any> Collection<T>.summarizingInt(transform: (T)->Int): SummaryStatisticsInt =
this.fold(SummaryStatisticsInt()) { stats, item -> stats.accumulate(transform(item)) }
Vous avez maintenant deux façons d'utiliser les nouvelles summarizingInt
fonctions:
val stats2 = persons.map { it.age }.summarizingInt()
// or
val stats3 = persons.summarizingInt { it.age }
Et tout cela produit les mêmes résultats. Nous pouvons également créer cette extension pour travailler sur Sequence
et pour les types primitifs appropriés.
Pour le plaisir, comparez le code Java JDK au code personnalisé Kotlin requis pour implémenter cette synthèse.
collect(Collectors.toList())
ou similaire, vous pouvez rencontrer ce problème: stackoverflow.com/a/35722167/3679676 (le problème, avec des solutions de contournement)