std::atomic
existe parce que de nombreux ISA ont une prise en charge matérielle directe
Ce que dit la norme C ++ std::atomic
a été analysé dans d'autres réponses.
Voyons maintenant ce qui se std::atomic
compile pour obtenir un autre type d'aperçu.
Le principal point à retenir de cette expérience est que les processeurs modernes prennent directement en charge les opérations sur les entiers atomiques, par exemple le préfixe LOCK dans x86, et std::atomic
existent essentiellement comme une interface portable pour ces instructions: que signifie l'instruction "lock" dans l'assemblage x86? Dans aarch64, LDADD serait utilisé.
Cette prise en charge permet des alternatives plus rapides à des méthodes plus générales telles que std::mutex
, qui peuvent rendre atomiques des sections multi-instructions plus complexes, au prix d'être plus lentes que std::atomic
parce std::mutex
qu'elles effectuent des futex
appels système sous Linux, qui est bien plus lent que les instructions de l'utilisateur émises par std::atomic
, voir aussi: std :: mutex crée-t-il une clôture?
Considérons le programme multi-thread suivant qui incrémente une variable globale sur plusieurs threads, avec différents mécanismes de synchronisation en fonction du préprocesseur défini est utilisé.
main.cpp
#include <atomic>
#include <iostream>
#include <thread>
#include <vector>
size_t niters;
#if STD_ATOMIC
std::atomic_ulong global(0);
#else
uint64_t global = 0;
#endif
void threadMain() {
for (size_t i = 0; i < niters; ++i) {
#if LOCK
__asm__ __volatile__ (
"lock incq %0;"
: "+m" (global),
"+g" (i) // to prevent loop unrolling
:
:
);
#else
__asm__ __volatile__ (
""
: "+g" (i) // to prevent he loop from being optimized to a single add
: "g" (global)
:
);
global++;
#endif
}
}
int main(int argc, char **argv) {
size_t nthreads;
if (argc > 1) {
nthreads = std::stoull(argv[1], NULL, 0);
} else {
nthreads = 2;
}
if (argc > 2) {
niters = std::stoull(argv[2], NULL, 0);
} else {
niters = 10;
}
std::vector<std::thread> threads(nthreads);
for (size_t i = 0; i < nthreads; ++i)
threads[i] = std::thread(threadMain);
for (size_t i = 0; i < nthreads; ++i)
threads[i].join();
uint64_t expect = nthreads * niters;
std::cout << "expect " << expect << std::endl;
std::cout << "global " << global << std::endl;
}
GitHub en amont .
Compilez, exécutez et démontez:
comon="-ggdb3 -O3 -std=c++11 -Wall -Wextra -pedantic main.cpp -pthread"
g++ -o main_fail.out $common
g++ -o main_std_atomic.out -DSTD_ATOMIC $common
g++ -o main_lock.out -DLOCK $common
./main_fail.out 4 100000
./main_std_atomic.out 4 100000
./main_lock.out 4 100000
gdb -batch -ex "disassemble threadMain" main_fail.out
gdb -batch -ex "disassemble threadMain" main_std_atomic.out
gdb -batch -ex "disassemble threadMain" main_lock.out
Sortie de condition de concurrence "incorrecte" extrêmement probable pour main_fail.out
:
expect 400000
global 100000
et la sortie "droite" déterministe des autres:
expect 400000
global 400000
Démontage de main_fail.out
:
0x0000000000002780 <+0>: endbr64
0x0000000000002784 <+4>: mov 0x29b5(%rip),%rcx # 0x5140 <niters>
0x000000000000278b <+11>: test %rcx,%rcx
0x000000000000278e <+14>: je 0x27b4 <threadMain()+52>
0x0000000000002790 <+16>: mov 0x29a1(%rip),%rdx # 0x5138 <global>
0x0000000000002797 <+23>: xor %eax,%eax
0x0000000000002799 <+25>: nopl 0x0(%rax)
0x00000000000027a0 <+32>: add $0x1,%rax
0x00000000000027a4 <+36>: add $0x1,%rdx
0x00000000000027a8 <+40>: cmp %rcx,%rax
0x00000000000027ab <+43>: jb 0x27a0 <threadMain()+32>
0x00000000000027ad <+45>: mov %rdx,0x2984(%rip) # 0x5138 <global>
0x00000000000027b4 <+52>: retq
Démontage de main_std_atomic.out
:
0x0000000000002780 <+0>: endbr64
0x0000000000002784 <+4>: cmpq $0x0,0x29b4(%rip) # 0x5140 <niters>
0x000000000000278c <+12>: je 0x27a6 <threadMain()+38>
0x000000000000278e <+14>: xor %eax,%eax
0x0000000000002790 <+16>: lock addq $0x1,0x299f(%rip) # 0x5138 <global>
0x0000000000002799 <+25>: add $0x1,%rax
0x000000000000279d <+29>: cmp %rax,0x299c(%rip) # 0x5140 <niters>
0x00000000000027a4 <+36>: ja 0x2790 <threadMain()+16>
0x00000000000027a6 <+38>: retq
Démontage de main_lock.out
:
Dump of assembler code for function threadMain():
0x0000000000002780 <+0>: endbr64
0x0000000000002784 <+4>: cmpq $0x0,0x29b4(%rip) # 0x5140 <niters>
0x000000000000278c <+12>: je 0x27a5 <threadMain()+37>
0x000000000000278e <+14>: xor %eax,%eax
0x0000000000002790 <+16>: lock incq 0x29a0(%rip) # 0x5138 <global>
0x0000000000002798 <+24>: add $0x1,%rax
0x000000000000279c <+28>: cmp %rax,0x299d(%rip) # 0x5140 <niters>
0x00000000000027a3 <+35>: ja 0x2790 <threadMain()+16>
0x00000000000027a5 <+37>: retq
Conclusions:
la version non atomique enregistre le global dans un registre et incrémente le registre.
Par conséquent, à la fin, il est très probable que quatre écritures reviennent à global avec la même valeur «incorrecte» de 100000
.
std::atomic
compile en lock addq
. Le préfixe LOCK permet d' inc
extraire, de modifier et de mettre à jour la mémoire de manière atomique.
notre préfixe LOCK d'assembly en ligne explicite se compile presque de la même manière que std::atomic
, sauf que our inc
est utilisé à la place de add
. Je ne sais pas pourquoi GCC a choisi add
, étant donné que notre INC a généré un décodage de 1 octet plus petit.
ARMv8 pourrait utiliser LDAXR + STLXR ou LDADD dans les processeurs plus récents: Comment démarrer des threads en C brut?
Testé dans Ubuntu 19.10 AMD64, GCC 9.2.1, Lenovo ThinkPad P51.
a.fetch_add(12)
si vous voulez un RMW atomique.