Résoudre par programmation «À qui appartient le zèbre»?


128

Edit: ce puzzle est également connu sous le nom de "L'énigme d'Einstein"

Le propriétaire du zèbre (vous pouvez essayer la version en ligne ici ) est un exemple d'énigmes classiques et je parie que la plupart des utilisateurs de Stack Overflow peuvent le résoudre avec un stylo et du papier. Mais à quoi ressemblerait une solution programmatique?

Sur la base des indices énumérés ci-dessous ...

  • Il y a cinq maisons.
  • Chaque maison a sa propre couleur unique.
  • Tous les propriétaires sont de nationalités différentes.
  • Ils ont tous des animaux différents.
  • Ils boivent tous des boissons différentes.
  • Ils fument tous des cigarettes différentes.
  • L'Anglais habite la maison rouge.
  • Le Suédois a un chien.
  • Le Danois boit du thé.
  • La maison verte est sur le côté gauche de la maison blanche.
  • Ils boivent du café dans la serre.
  • L'homme qui fume le Pall Mall a des oiseaux.
  • Dans la maison jaune, ils fument Dunhill.
  • Dans la maison du milieu, ils boivent du lait.
  • Le Norvégien vit dans la première maison.
  • L'homme qui fume Blend vit dans la maison à côté de la maison avec des chats.
  • Dans la maison à côté de la maison où ils ont un cheval, ils fument du Dunhill.
  • L'homme qui fume Blue Master boit de la bière.
  • L'Allemand fume Prince.
  • Le Norvégien habite à côté de la maison bleue.
  • Ils boivent de l'eau dans la maison voisine de la maison où ils fument Blend.

... à qui appartient le Zebra?


37
Les zèbres n'ont jamais été mentionnés dans la liste d'informations (indices), donc la spécification est sous-spécifiée. En tant qu'entrepreneur, je suis alors libre d'ignorer l'existence de tous les zèbres dans la solution, donc ma réponse est simplement que personne ne possède le zèbre, car il n'y a pas de zèbres. : D
Peter M

10
@Peter M: La réponse était 42.
Surtout inoffensif

2
@Peter M: Oui, le fait qu'il y ait un zèbre est aussi un indice, mais il n'est pas répertorié comme tel.
activout.se

1
Sonne comme un bon cas d'utilisation pour un solveur SAT.
asmeurer

Réponses:


162

Voici une solution en Python basée sur la programmation par contraintes:

from constraint import AllDifferentConstraint, InSetConstraint, Problem

# variables
colors        = "blue red green white yellow".split()
nationalities = "Norwegian German Dane Swede English".split()
pets          = "birds dog cats horse zebra".split()
drinks        = "tea coffee milk beer water".split()
cigarettes    = "Blend, Prince, Blue Master, Dunhill, Pall Mall".split(", ")

# There are five houses.
minn, maxn = 1, 5
problem = Problem()
# value of a variable is the number of a house with corresponding property
variables = colors + nationalities + pets + drinks + cigarettes
problem.addVariables(variables, range(minn, maxn+1))

# Each house has its own unique color.
# All house owners are of different nationalities.
# They all have different pets.
# They all drink different drinks.
# They all smoke different cigarettes.
for vars_ in (colors, nationalities, pets, drinks, cigarettes):
    problem.addConstraint(AllDifferentConstraint(), vars_)

# In the middle house they drink milk.
#NOTE: interpret "middle" in a numerical sense (not geometrical)
problem.addConstraint(InSetConstraint([(minn + maxn) // 2]), ["milk"])
# The Norwegian lives in the first house.
#NOTE: interpret "the first" as a house number
problem.addConstraint(InSetConstraint([minn]), ["Norwegian"])
# The green house is on the left side of the white house.
#XXX: what is "the left side"? (linear, circular, two sides, 2D house arrangment)
#NOTE: interpret it as 'green house number' + 1 == 'white house number'
problem.addConstraint(lambda a,b: a+1 == b, ["green", "white"])

def add_constraints(constraint, statements, variables=variables, problem=problem):
    for stmt in (line for line in statements if line.strip()):
        problem.addConstraint(constraint, [v for v in variables if v in stmt])

and_statements = """
They drink coffee in the green house.
The man who smokes Pall Mall has birds.
The English man lives in the red house.
The Dane drinks tea.
In the yellow house they smoke Dunhill.
The man who smokes Blue Master drinks beer.
The German smokes Prince.
The Swede has a dog.
""".split("\n")
add_constraints(lambda a,b: a == b, and_statements)

nextto_statements = """
The man who smokes Blend lives in the house next to the house with cats.
In the house next to the house where they have a horse, they smoke Dunhill.
The Norwegian lives next to the blue house.
They drink water in the house next to the house where they smoke Blend.
""".split("\n")
#XXX: what is "next to"? (linear, circular, two sides, 2D house arrangment)
add_constraints(lambda a,b: abs(a - b) == 1, nextto_statements)

def solve(variables=variables, problem=problem):
    from itertools  import groupby
    from operator   import itemgetter

    # find & print solutions
    for solution in problem.getSolutionIter():
        for key, group in groupby(sorted(solution.iteritems(), key=itemgetter(1)), key=itemgetter(1)):
            print key, 
            for v in sorted(dict(group).keys(), key=variables.index):
                print v.ljust(9),
            print

if __name__ == '__main__':
    solve()

Production:

1 yellow    Norwegian cats      water     Dunhill  
2 blue      Dane      horse     tea       Blend    
3 red       English   birds     milk      Pall Mall
4 green     German    zebra     coffee    Prince   
5 white     Swede     dog       beer      Blue Master

Il faut 0,6 seconde (CPU 1,5 GHz) pour trouver la solution.
La réponse est "L'Allemand possède le zèbre".


Pour installer le constraintmodule via pip: pip install python-constraint

Pour installer manuellement:


3
Je n'appellerais pas cela incorrect. La seule contrainte qu'elle enfreint est que la maison verte ne reste pas de la maison blanche. Mais c'est à cause de la façon dont vous avez défini cette contrainte et peut facilement être corrigée. Le lien dans la question permet même votre solution étant donné la définition trouble de «à gauche de».
mercator

4
@LFSR Consulting: '//' est toujours une division entière: '3 // 2 == 1'. '/' pourrait être une division flottante '3/2 == 1,5' (en Python 3.0 ou en présence de 'from future import division') ou pourrait être une division entière (comme en C) '3/2 == 1' sur ancienne version de Python sans «de la future division d'importation».
jfs

4
C'est le premier programme de contraintes que j'ai examiné. Comme beaucoup l'ont souligné, votre implémentation python est impressionnante. C'est vraiment mignon comment vous avez évité de coder manuellement les contraintes en utilisant add_constraints (), and_statements et nextto_statements.
rpattabi

1
Y a-t-il une raison de ne pas le faire pip install python-constraint? Je l'ai fait il y a un instant et cela semble donner le résultat attendu.
Ben Burns

1
@BenBurns: aucune raison. La réponse a été écrite en 2008. Si vous l'avez testée et qu'elle produit le même résultat, vous pouvez mettre à jour les instructions d'installation et les liens correspondants vers la documentation (cela ne change pas les aspects essentiels de la réponse - vous êtes libre pour le modifier).
jfs

46

Dans Prolog, nous pouvons instancier le domaine simplement en sélectionnant des éléments à partir de celui-ci :) (en faisant des choix mutuellement exclusifs , par souci d'efficacité). En utilisant SWI-Prolog,

select([A|As],S):- select(A,S,S1),select(As,S1).
select([],_). 

left_of(A,B,C):- append(_,[A,B|_],C).  
next_to(A,B,C):- left_of(A,B,C) ; left_of(B,A,C).

zebra(Owns, HS):-     % house: color,nation,pet,drink,smokes
  HS   = [ h(_,norwegian,_,_,_),    h(blue,_,_,_,_),   h(_,_,_,milk,_), _, _], 
  select([ h(red,brit,_,_,_),       h(_,swede,dog,_,_), 
           h(_,dane,_,tea,_),       h(_,german,_,_,prince)], HS),
  select([ h(_,_,birds,_,pallmall), h(yellow,_,_,_,dunhill),
           h(_,_,_,beer,bluemaster)],                        HS), 
  left_of( h(green,_,_,coffee,_),   h(white,_,_,_,_),        HS),
  next_to( h(_,_,_,_,dunhill),      h(_,_,horse,_,_),        HS),
  next_to( h(_,_,_,_,blend),        h(_,_,cats, _,_),        HS),
  next_to( h(_,_,_,_,blend),        h(_,_,_,water,_),        HS),
  member(  h(_,Owns,zebra,_,_),                              HS).

Fonctionne assez instantanément:

?- time( (zebra(Who,HS), writeln(Who), nl, maplist(writeln,HS), nl, false 
          ; writeln('no more solutions!') )).
german

h( yellow, norwegian, cats,   water,  dunhill   )
h( blue,   dane,      horse,  tea,    blend     )
h( red,    brit,      birds,  milk,   pallmall  )
h( green,  german,    zebra,  coffee, prince    )     % formatted by hand
h( white,  swede,     dog,    beer,   bluemaster)

no more solutions!
% 1,706 inferences, 0.000 CPU in 0.070 seconds (0% CPU, Infinite Lips)
true.

16

Une affiche a déjà mentionné que Prolog est une solution potentielle. C'est vrai et c'est la solution que j'utiliserais. En termes plus généraux, c'est un problème parfait pour un système d'inférence automatisé. Prolog est un langage de programmation logique (et un interpréteur associé) qui forme un tel système. Il permet essentiellement de conclure des faits à partir de déclarations faites en utilisant la logique du premier ordre . FOL est fondamentalement une forme plus avancée de logique propositionnelle. Si vous décidez que vous ne souhaitez pas utiliser Prolog, vous pouvez utiliser un système similaire de votre propre création en utilisant une technique telle que modus ponens pour tirer les conclusions.

Vous devrez, bien sûr, ajouter quelques règles sur les zèbres, car cela n'est mentionné nulle part ... Je crois que l'intention est que vous puissiez comprendre les 4 autres animaux de compagnie et ainsi en déduire que le dernier est le zèbre? Vous voudrez ajouter des règles qui stipulent qu'un zèbre est l'un des animaux de compagnie, et chaque maison ne peut avoir qu'un seul animal. Obtenir ce type de connaissances «de bon sens» dans un système d'inférence est le principal obstacle à l'utilisation de la technique comme une véritable IA. Il existe des projets de recherche, tels que Cyc, qui tentent de donner une telle connaissance commune par la force brute. Ils ont rencontré un succès intéressant.


Bon point sur les règles du «bon sens». Je me souviens avoir été très lié à cela il y a des années en interprétant l'expression « la maison à côté de la maison» - cela signifie-t-il qu'il n'y en a qu'une? Ce n'est pas évident.
Chris

Mec cyc est en développement depuis des décennies sans aucun type de méthode révolutionnaire. Un peu triste, ce serait bien de voir l'approche de la force brute l'emporter sur les modèles associatifs.
Josh

Nous avons utilisé CLIPS à l'université pour déduire ce type d'informations dans notre cours d'IA.
Josh Smeaton le

15

Compatible SWI-Prolog:

% NOTE - This may or may not be more efficent. A bit verbose, though.
left_side(L, R, [L, R, _, _, _]).
left_side(L, R, [_, L, R, _, _]).
left_side(L, R, [_, _, L, R, _]).
left_side(L, R, [_, _, _, L, R]).

next_to(X, Y, Street) :- left_side(X, Y, Street).
next_to(X, Y, Street) :- left_side(Y, X, Street).

m(X, Y) :- member(X, Y).

get_zebra(Street, Who) :- 
    Street = [[C1, N1, P1, D1, S1],
              [C2, N2, P2, D2, S2],
              [C3, N3, P3, D3, S3],
              [C4, N4, P4, D4, S4],
              [C5, N5, P5, D5, S5]],
    m([red, english, _, _, _], Street),
    m([_, swede, dog, _, _], Street),
    m([_, dane, _, tea, _], Street),
    left_side([green, _, _, _, _], [white, _, _, _, _], Street),
    m([green, _, _, coffee, _], Street),
    m([_, _, birds, _, pallmall], Street),
    m([yellow, _, _, _, dunhill], Street),
    D3 = milk,
    N1 = norwegian,
    next_to([_, _, _, _, blend], [_, _, cats, _, _], Street),
    next_to([_, _, horse, _, _], [_, _, _, _, dunhill], Street),
    m([_, _, _, beer, bluemaster], Street),
    m([_, german, _, _, prince], Street),
    next_to([_, norwegian, _, _, _], [blue, _, _, _, _], Street),
    next_to([_, _, _, water, _], [_, _, _, _, blend], Street),
    m([_, Who, zebra, _, _], Street).

Chez l'interprète:

?- get_zebra(Street, Who).
Street = ...
Who = german

13

Voici comment je procéderais. D'abord, je générerais tous les n-tuples ordonnés

(housenumber, color, nationality, pet, drink, smoke)

5 ^ 6 d'entre eux, 15625, facilement gérables. Ensuite, je filtrerais les conditions booléennes simples. il y en a dix, et chacun de ceux que vous vous attendez à filtrer 8/25 des conditions (1/25 des conditions contiennent un Suédois avec un chien, 16/25 contiennent un non-Suédois avec un non-chien) . Bien sûr, ils ne sont pas indépendants, mais après avoir filtré ceux-ci, il ne devrait plus en rester beaucoup.

Après cela, vous avez un joli problème de graphique. Créez un graphique avec chaque nœud représentant l'un des n-uplets restants. Ajoutez des arêtes au graphique si les deux extrémités contiennent des doublons dans une position de n-uplets ou enfreignent les contraintes de «position» (il y en a cinq). De là, vous êtes presque à la maison, recherchez dans le graphique un ensemble indépendant de cinq nœuds (sans aucun des nœuds connectés par des arêtes). S'il n'y en a pas trop, vous pouvez simplement générer de manière exhaustive tous les 5-tuples de n-tuples et les filtrer à nouveau.

Cela pourrait être un bon candidat pour le code golf. Quelqu'un peut probablement le résoudre en une seule ligne avec quelque chose comme haskell :)

après coup: la passe de filtre initiale peut également éliminer les informations des contraintes de position. Pas grand chose (1/25), mais toujours significatif.


Pour le code golf, une solution pourrait techniquement simplement imprimer la réponse, ce qui équivaut à un code golf "Hello world". Il faudrait généraliser le problème pour obtenir un code golf intéressant, et cela ne se généralise pas de manière triviale.
Adam Rosenfield

Point pris :) Mon haskell est verbeux mais mon score était de toute façon hors du parc :)
Chris

1
Je pense que votre évaluation 5 ^ 6 des solutions possibles est erronée. Je crois que le nombre de combinaisons possibles d'éléments «i» dans les catégories «m» devrait être (i!) ^ (M-1). Par exemple, les cinq options de couleur pourraient être arrangées 5! façons. Si la catégorie des numéros de maison reste dans le même ordre, les 5 autres catégories pourraient également être disposées de cette façon, ce qui signifie que les combinaisons possibles sont (5!) ^ 5 ou 24 883 200 000; un peu plus élevé que 15 625, ce qui rend une attaque par force brute beaucoup plus difficile à combattre.
MidnightLightning

1
15 625 est précis d'après sa stratégie de solution. Si vous vouliez attribuer tous les états possibles à toutes les variables, ce serait beaucoup plus grand, mais il choisit de ne créer que des états partiels, de les éliminer, puis d'utiliser une autre technique pour rassembler la réponse finale.
Nick Larsen

9

Une autre solution Python, cette fois en utilisant PyKE (Python Knowledge Engine) de Python. Certes, c'est plus verbeux que d'utiliser le module «contrainte» de Python dans la solution de @JFSebastian, mais il fournit une comparaison intéressante pour quiconque cherche dans un moteur de connaissances brutes pour ce type de problème.

indices.kfb

categories( POSITION, 1, 2, 3, 4, 5 )                                   # There are five houses.
categories( HOUSE_COLOR, blue, red, green, white, yellow )              # Each house has its own unique color.
categories( NATIONALITY, Norwegian, German, Dane, Swede, English )      # All house owners are of different nationalities.
categories( PET, birds, dog, cats, horse, zebra )                       # They all have different pets.
categories( DRINK, tea, coffee, milk, beer, water )                     # They all drink different drinks.
categories( SMOKE, Blend, Prince, 'Blue Master', Dunhill, 'Pall Mall' ) # They all smoke different cigarettes.

related( NATIONALITY, English, HOUSE_COLOR, red )    # The English man lives in the red house.
related( NATIONALITY, Swede, PET, dog )              # The Swede has a dog.
related( NATIONALITY, Dane, DRINK, tea )             # The Dane drinks tea.
left_of( HOUSE_COLOR, green, HOUSE_COLOR, white )    # The green house is on the left side of the white house.
related( DRINK, coffee, HOUSE_COLOR, green )         # They drink coffee in the green house.
related( SMOKE, 'Pall Mall', PET, birds )            # The man who smokes Pall Mall has birds.
related( SMOKE, Dunhill, HOUSE_COLOR, yellow )       # In the yellow house they smoke Dunhill.
related( POSITION, 3, DRINK, milk )                  # In the middle house they drink milk.
related( NATIONALITY, Norwegian, POSITION, 1 )       # The Norwegian lives in the first house.
next_to( SMOKE, Blend, PET, cats )                   # The man who smokes Blend lives in the house next to the house with cats.
next_to( SMOKE, Dunhill, PET, horse )                # In the house next to the house where they have a horse, they smoke Dunhill.
related( SMOKE, 'Blue Master', DRINK, beer )         # The man who smokes Blue Master drinks beer.
related( NATIONALITY, German, SMOKE, Prince )        # The German smokes Prince.
next_to( NATIONALITY, Norwegian, HOUSE_COLOR, blue ) # The Norwegian lives next to the blue house.
next_to( DRINK, water, SMOKE, Blend )                # They drink water in the house next to the house where they smoke Blend.

relations.krb

#############
# Categories

# Foreach set of categories, assert each type
categories
    foreach
        clues.categories($category, $thing1, $thing2, $thing3, $thing4, $thing5)
    assert
        clues.is_category($category, $thing1)
        clues.is_category($category, $thing2)
        clues.is_category($category, $thing3)
        clues.is_category($category, $thing4)
        clues.is_category($category, $thing5)


#########################
# Inverse Relationships

# Foreach A=1, assert 1=A
inverse_relationship_positive
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
    assert
        clues.related($category2, $thing2, $category1, $thing1)

# Foreach A!1, assert 1!A
inverse_relationship_negative
    foreach
        clues.not_related($category1, $thing1, $category2, $thing2)
    assert
        clues.not_related($category2, $thing2, $category1, $thing1)

# Foreach "A beside B", assert "B beside A"
inverse_relationship_beside
    foreach
        clues.next_to($category1, $thing1, $category2, $thing2)
    assert
        clues.next_to($category2, $thing2, $category1, $thing1)


###########################
# Transitive Relationships

# Foreach A=1 and 1=a, assert A=a
transitive_positive
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
        clues.related($category2, $thing2, $category3, $thing3)

        check unique($thing1, $thing2, $thing3) \
          and unique($category1, $category2, $category3)
    assert
        clues.related($category1, $thing1, $category3, $thing3)

# Foreach A=1 and 1!a, assert A!a
transitive_negative
    foreach
        clues.related($category1, $thing1, $category2, $thing2)
        clues.not_related($category2, $thing2, $category3, $thing3)

        check unique($thing1, $thing2, $thing3) \
          and unique($category1, $category2, $category3)
    assert
        clues.not_related($category1, $thing1, $category3, $thing3)


##########################
# Exclusive Relationships

# Foreach A=1, assert A!2 and A!3 and A!4 and A!5
if_one_related_then_others_unrelated
    foreach
        clues.related($category, $thing, $category_other, $thing_other)
        check unique($category, $category_other)

        clues.is_category($category_other, $thing_not_other)
        check unique($thing, $thing_other, $thing_not_other)
    assert
        clues.not_related($category, $thing, $category_other, $thing_not_other)

# Foreach A!1 and A!2 and A!3 and A!4, assert A=5
if_four_unrelated_then_other_is_related
    foreach
        clues.not_related($category, $thing, $category_other, $thingA)
        clues.not_related($category, $thing, $category_other, $thingB)
        check unique($thingA, $thingB)

        clues.not_related($category, $thing, $category_other, $thingC)
        check unique($thingA, $thingB, $thingC)

        clues.not_related($category, $thing, $category_other, $thingD)
        check unique($thingA, $thingB, $thingC, $thingD)

        # Find the fifth variation of category_other.
        clues.is_category($category_other, $thingE)
        check unique($thingA, $thingB, $thingC, $thingD, $thingE)
    assert
        clues.related($category, $thing, $category_other, $thingE)


###################
# Neighbors: Basic

# Foreach "A left of 1", assert "A beside 1"
expanded_relationship_beside_left
    foreach
        clues.left_of($category1, $thing1, $category2, $thing2)
    assert
        clues.next_to($category1, $thing1, $category2, $thing2)

# Foreach "A beside 1", assert A!1
unrelated_to_beside
    foreach
        clues.next_to($category1, $thing1, $category2, $thing2)
        check unique($category1, $category2)
    assert
        clues.not_related($category1, $thing1, $category2, $thing2)


###################################
# Neighbors: Spatial Relationships

# Foreach "A beside B" and "A=(at-edge)", assert "B=(near-edge)"
check_next_to_either_edge
    foreach
        clues.related(POSITION, $position_known, $category, $thing)
        check is_edge($position_known)

        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.is_category(POSITION, $position_other)
        check is_beside($position_known, $position_other)
    assert
        clues.related(POSITION, $position_other, $category_other, $thing_other)

# Foreach "A beside B" and "A!(near-edge)" and "B!(near-edge)", assert "A!(at-edge)"
check_too_close_to_edge
    foreach
        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.is_category(POSITION, $position_edge)
        clues.is_category(POSITION, $position_near_edge)
        check is_edge($position_edge) and is_beside($position_edge, $position_near_edge)

        clues.not_related(POSITION, $position_near_edge, $category, $thing)
        clues.not_related(POSITION, $position_near_edge, $category_other, $thing_other)
    assert
        clues.not_related(POSITION, $position_edge, $category, $thing)

# Foreach "A beside B" and "A!(one-side)", assert "A=(other-side)"
check_next_to_with_other_side_impossible
    foreach
        clues.next_to($category, $thing, $category_other, $thing_other)

        clues.related(POSITION, $position_known, $category_other, $thing_other)
        check not is_edge($position_known)

        clues.not_related($category, $thing, POSITION, $position_one_side)
        check is_beside($position_known, $position_one_side)

        clues.is_category(POSITION, $position_other_side)
        check is_beside($position_known, $position_other_side) \
          and unique($position_known, $position_one_side, $position_other_side)
    assert
        clues.related($category, $thing, POSITION, $position_other_side)

# Foreach "A left of B"...
#   ... and "C=(position1)" and "D=(position2)" and "E=(position3)"
# ~> assert "A=(other-position)" and "B=(other-position)+1"
left_of_and_only_two_slots_remaining
    foreach
        clues.left_of($category_left, $thing_left, $category_right, $thing_right)

        clues.related($category_left, $thing_left_other1, POSITION, $position1)
        clues.related($category_left, $thing_left_other2, POSITION, $position2)
        clues.related($category_left, $thing_left_other3, POSITION, $position3)
        check unique($thing_left, $thing_left_other1, $thing_left_other2, $thing_left_other3)

        clues.related($category_right, $thing_right_other1, POSITION, $position1)
        clues.related($category_right, $thing_right_other2, POSITION, $position2)
        clues.related($category_right, $thing_right_other3, POSITION, $position3)
        check unique($thing_right, $thing_right_other1, $thing_right_other2, $thing_right_other3)

        clues.is_category(POSITION, $position4)
        clues.is_category(POSITION, $position5)

        check is_left_right($position4, $position5) \
          and unique($position1, $position2, $position3, $position4, $position5)
    assert
        clues.related(POSITION, $position4, $category_left, $thing_left)
        clues.related(POSITION, $position5, $category_right, $thing_right)


#########################

fc_extras

    def unique(*args):
        return len(args) == len(set(args))

    def is_edge(pos):
        return (pos == 1) or (pos == 5)

    def is_beside(pos1, pos2):
        diff = (pos1 - pos2)
        return (diff == 1) or (diff == -1)

    def is_left_right(pos_left, pos_right):
        return (pos_right - pos_left == 1)

driver.py (en fait plus grand, mais c'est l'essence même)

from pyke import knowledge_engine

engine = knowledge_engine.engine(__file__)
engine.activate('relations')

try:
    natl = engine.prove_1_goal('clues.related(PET, zebra, NATIONALITY, $nationality)')[0].get('nationality')
except Exception, e:
    natl = "Unknown"
print "== Who owns the zebra? %s ==" % natl

Exemple de sortie:

$ python driver.py

== Who owns the zebra? German ==

#   Color    Nationality    Pet    Drink       Smoke    
=======================================================
1   yellow   Norwegian     cats    water    Dunhill     
2   blue     Dane          horse   tea      Blend       
3   red      English       birds   milk     Pall Mall   
4   green    German        zebra   coffee   Prince      
5   white    Swede         dog     beer     Blue Master 

Calculated in 1.19 seconds.

Source: https://github.com/DreadPirateShawn/pyke-who-owns-zebra


8

Voici un extrait de la solution complète utilisant NSolver , publiée sur Einstein's Riddle en C # :

// The green house's owner drinks coffee
Post(greenHouse.Eq(coffee));
// The person who smokes Pall Mall rears birds 
Post(pallMall.Eq(birds));
// The owner of the yellow house smokes Dunhill 
Post(yellowHouse.Eq(dunhill));

5
Il n'est pas nécessaire d'utiliser TinyURL ici, n'est-ce pas? Ils ressemblent tous à des rickrolls pour moi.
Karl

1
J'ai corrigé le tinyurl expiré.
jfs

@LamonteCristo Wayback machine à la rescousse.
approxiblue

8

Voici une solution simple en CLP (FD) (voir aussi ):

:- use_module(library(clpfd)).

solve(ZebraOwner) :-
    maplist( init_dom(1..5), 
        [[British,  Swedish,  Danish,  Norwegian, German],     % Nationalities
         [Red,      Green,    Blue,    White,     Yellow],     % Houses
         [Tea,      Coffee,   Milk,    Beer,      Water],      % Beverages
         [PallMall, Blend,    Prince,  Dunhill,   BlueMaster], % Cigarettes
         [Dog,      Birds,    Cats,    Horse,     Zebra]]),    % Pets
    British #= Red,        % Hint 1
    Swedish #= Dog,        % Hint 2
    Danish #= Tea,         % Hint 3
    Green #= White - 1 ,   % Hint 4
    Green #= Coffee,       % Hint 5
    PallMall #= Birds,     % Hint 6
    Yellow #= Dunhill,     % Hint 7
    Milk #= 3,             % Hint 8
    Norwegian #= 1,        % Hint 9
    neighbor(Blend, Cats),     % Hint 10
    neighbor(Horse, Dunhill),  % Hint 11
    BlueMaster #= Beer,        % Hint 12
    German #= Prince,          % Hint 13
    neighbor(Norwegian, Blue), % Hint 14
    neighbor(Blend, Water),    % Hint 15
    memberchk(Zebra-ZebraOwner, [British-british, Swedish-swedish, Danish-danish,
                                 Norwegian-norwegian, German-german]).

init_dom(R, L) :-
    all_distinct(L),
    L ins R.

neighbor(X, Y) :-
    (X #= (Y - 1)) #\/ (X #= (Y + 1)).

L'exécuter, produit:

3? - temps (résoudre (Z)).
% 111798 inférences, 0,016 CPU en 0,020 seconde (78% CPU, 7166493 Lips)
Z = allemand.


neighbor(X,Y) :- abs(X-Y) #= 1.
faux


7

Solution ES6 (Javascript)

Avec beaucoup de générateurs ES6 et un peu de lodash . Vous aurez besoin de Babel pour exécuter ceci.

var _ = require('lodash');

function canBe(house, criteria) {
    for (const key of Object.keys(criteria))
        if (house[key] && house[key] !== criteria[key])
            return false;
    return true;
}

function* thereShouldBe(criteria, street) {
    for (const i of _.range(street.length))
        yield* thereShouldBeAtIndex(criteria, i, street);
}

function* thereShouldBeAtIndex(criteria, index, street) {
    if (canBe(street[index], criteria)) {
        const newStreet = _.cloneDeep(street);
        newStreet[index] = _.assign({}, street[index], criteria);
        yield newStreet;
    }
}

function* leftOf(critA, critB, street) {
    for (const i of _.range(street.length - 1)) {
        if (canBe(street[i], critA) && canBe(street[i+1], critB)) {
            const newStreet = _.cloneDeep(street);
            newStreet[i  ] = _.assign({}, street[i  ], critA);
            newStreet[i+1] = _.assign({}, street[i+1], critB);
            yield newStreet;
        }
    }
}
function* nextTo(critA, critB, street) {
    yield* leftOf(critA, critB, street);
    yield* leftOf(critB, critA, street);
}

const street = [{}, {}, {}, {}, {}]; // five houses

// Btw: it turns out we don't need uniqueness constraint.

const constraints = [
    s => thereShouldBe({nation: 'English', color: 'red'}, s),
    s => thereShouldBe({nation: 'Swede', animal: 'dog'}, s),
    s => thereShouldBe({nation: 'Dane', drink: 'tea'}, s),
    s => leftOf({color: 'green'}, {color: 'white'}, s),
    s => thereShouldBe({drink: 'coffee', color: 'green'}, s),
    s => thereShouldBe({cigarettes: 'PallMall', animal: 'birds'}, s),
    s => thereShouldBe({color: 'yellow', cigarettes: 'Dunhill'}, s),
    s => thereShouldBeAtIndex({drink: 'milk'}, 2, s),
    s => thereShouldBeAtIndex({nation: 'Norwegian'}, 0, s),
    s => nextTo({cigarettes: 'Blend'}, {animal: 'cats'}, s),
    s => nextTo({animal: 'horse'}, {cigarettes: 'Dunhill'}, s),
    s => thereShouldBe({cigarettes: 'BlueMaster', drink: 'beer'}, s),
    s => thereShouldBe({nation: 'German', cigarettes: 'Prince'}, s),
    s => nextTo({nation: 'Norwegian'}, {color: 'blue'}, s),
    s => nextTo({drink: 'water'}, {cigarettes: 'Blend'}, s),

    s => thereShouldBe({animal: 'zebra'}, s), // should be somewhere
];

function* findSolution(remainingConstraints, street) {
    if (remainingConstraints.length === 0)
        yield street;
    else
        for (const newStreet of _.head(remainingConstraints)(street))
            yield* findSolution(_.tail(remainingConstraints), newStreet);
}

for (const streetSolution of findSolution(constraints, street)) {
    console.log(streetSolution);
}

Résultat:

[ { color: 'yellow',
    cigarettes: 'Dunhill',
    nation: 'Norwegian',
    animal: 'cats',
    drink: 'water' },
  { nation: 'Dane',
    drink: 'tea',
    cigarettes: 'Blend',
    animal: 'horse',
    color: 'blue' },
  { nation: 'English',
    color: 'red',
    cigarettes: 'PallMall',
    animal: 'birds',
    drink: 'milk' },
  { color: 'green',
    drink: 'coffee',
    nation: 'German',
    cigarettes: 'Prince',
    animal: 'zebra' },
  { nation: 'Swede',
    animal: 'dog',
    color: 'white',
    cigarettes: 'BlueMaster',
    drink: 'beer' } ]

Le temps d'exécution est d'environ 2,5 secondes pour moi, mais cela peut être beaucoup amélioré en modifiant l'ordre des règles. J'ai décidé de conserver la commande d'origine pour plus de clarté.

Merci, c'était un défi sympa!



3

Le moyen le plus simple de résoudre de tels problèmes par programme est d'utiliser des boucles imbriquées sur toutes les permutations et de vérifier si le résultat satisfait les prédicats de la question. De nombreux prédicats peuvent être hissés de la boucle interne vers les boucles externes afin de réduire considérablement la complexité de calcul jusqu'à ce que la réponse puisse être calculée dans un temps raisonnable.

Voici une solution F # simple dérivée d'un article du journal F # :

let rec distribute y xs =
  match xs with
  | [] -> [[y]]
  | x::xs -> (y::x::xs)::[for xs in distribute y xs -> x::xs]

let rec permute xs =
  match xs with
  | [] | [_] as xs -> [xs]
  | x::xs -> List.collect (distribute x) (permute xs)

let find xs x = List.findIndex ((=) x) xs + 1

let eq xs x ys y = find xs x = find ys y

let nextTo xs x ys y = abs(find xs x - find ys y) = 1

let nations = ["British"; "Swedish"; "Danish"; "Norwegian"; "German"]

let houses = ["Red"; "Green"; "Blue"; "White"; "Yellow"]

let drinks = ["Milk"; "Coffee"; "Water"; "Beer"; "Tea"]

let smokes = ["Blend"; "Prince"; "Blue Master"; "Dunhill"; "Pall Mall"]

let pets = ["Dog"; "Cat"; "Zebra"; "Horse"; "Bird"]

[ for nations in permute nations do
    if find nations "Norwegian" = 1 then
      for houses in permute houses do
        if eq nations "British" houses "Red" &&
           find houses "Green" = find houses "White"-1 &&
           nextTo nations "Norwegian" houses "Blue" then
          for drinks in permute drinks do
            if eq nations "Danish" drinks "Tea" &&
               eq houses "Green" drinks "Coffee" &&
               3 = find drinks "Milk" then
              for smokes in permute smokes do
                if eq houses "Yellow" smokes "Dunhill" &&
                   eq smokes "Blue Master" drinks "Beer" &&
                   eq nations "German" smokes "Prince" &&
                   nextTo smokes "Blend" drinks "Water" then
                  for pets in permute pets do
                    if eq nations "Swedish" pets "Dog" &&
                       eq smokes "Pall Mall" pets "Bird" &&
                       nextTo pets "Cat" smokes "Blend" &&
                       nextTo pets "Horse" smokes "Dunhill" then
                      yield nations, houses, drinks, smokes, pets ]

La sortie obtenue en 9ms est:

val it :
  (string list * string list * string list * string list * string list) list =
  [(["Norwegian"; "Danish"; "British"; "German"; "Swedish"],
    ["Yellow"; "Blue"; "Red"; "Green"; "White"],
    ["Water"; "Tea"; "Milk"; "Coffee"; "Beer"],
    ["Dunhill"; "Blend"; "Pall Mall"; "Prince"; "Blue Master"],
    ["Cat"; "Horse"; "Bird"; "Zebra"; "Dog"])]

J'aime ça. Je ne m'attendais pas à ce que cette attaque directe soit réalisable.
miracle173 le

1

L'exemple Microsoft Solver Foundation de: https://msdn.microsoft.com/en-us/library/ff525831%28v=vs.93%29.aspx?f=255&MSPPError=-2147217396

delegate CspTerm NamedTerm(string name);

public static void Zebra() {
  ConstraintSystem S = ConstraintSystem.CreateSolver();
  var termList = new List<KeyValuePair<CspTerm, string>>();

  NamedTerm House = delegate(string name) {
    CspTerm x = S.CreateVariable(S.CreateIntegerInterval(1, 5), name);
    termList.Add(new KeyValuePair<CspTerm, string>(x, name));
    return x;
  };

  CspTerm English = House("English"), Spanish = House("Spanish"),
    Japanese = House("Japanese"), Italian = House("Italian"),
    Norwegian = House("Norwegian");
  CspTerm red = House("red"), green = House("green"),
    white = House("white"),
    blue = House("blue"), yellow = House("yellow");
  CspTerm dog = House("dog"), snails = House("snails"),
    fox = House("fox"),
    horse = House("horse"), zebra = House("zebra");
  CspTerm painter = House("painter"), sculptor = House("sculptor"),
    diplomat = House("diplomat"), violinist = House("violinist"),
    doctor = House("doctor");
  CspTerm tea = House("tea"), coffee = House("coffee"),
    milk = House("milk"),
    juice = House("juice"), water = House("water");

  S.AddConstraints(
    S.Unequal(English, Spanish, Japanese, Italian, Norwegian),
    S.Unequal(red, green, white, blue, yellow),
    S.Unequal(dog, snails, fox, horse, zebra),
    S.Unequal(painter, sculptor, diplomat, violinist, doctor),
    S.Unequal(tea, coffee, milk, juice, water),
    S.Equal(English, red),
    S.Equal(Spanish, dog),
    S.Equal(Japanese, painter),
    S.Equal(Italian, tea),
    S.Equal(1, Norwegian),
    S.Equal(green, coffee),
    S.Equal(1, green - white),
    S.Equal(sculptor, snails),
    S.Equal(diplomat, yellow),
    S.Equal(3, milk),
    S.Equal(1, S.Abs(Norwegian - blue)),
    S.Equal(violinist, juice),
    S.Equal(1, S.Abs(fox - doctor)),
    S.Equal(1, S.Abs(horse - diplomat))
  );
  bool unsolved = true;
  ConstraintSolverSolution soln = S.Solve();

  while (soln.HasFoundSolution) {
    unsolved = false;
    System.Console.WriteLine("solved.");
    StringBuilder[] houses = new StringBuilder[5];
    for (int i = 0; i < 5; i++)
      houses[i] = new StringBuilder(i.ToString());
    foreach (KeyValuePair<CspTerm, string> kvp in termList) {
      string item = kvp.Value;
      object house;
      if (!soln.TryGetValue(kvp.Key, out house))
        throw new InvalidProgramException(
                    "can't find a Term in the solution: " + item);
      houses[(int)house - 1].Append(", ");
      houses[(int)house - 1].Append(item);
    }
    foreach (StringBuilder house in houses) {
      System.Console.WriteLine(house);
    }
    soln.GetNext();
  }
  if (unsolved)
    System.Console.WriteLine("No solution found.");
  else
    System.Console.WriteLine(
"Expected: the Norwegian drinking water and the Japanese with the zebra.");
}

1

Ceci est une solution MiniZinc au puzzle de zèbre tel que défini dans Wikipedia:

include "globals.mzn";

% Zebra puzzle
int: nc = 5;

% Colors
int: red = 1;
int: green = 2;
int: ivory = 3;
int: yellow = 4;
int: blue = 5;
array[1..nc] of var 1..nc:color;
constraint alldifferent([color[i] | i in 1..nc]);

% Nationalities
int: eng = 1;
int: spa = 2;
int: ukr = 3;
int: nor = 4;
int: jap = 5;
array[1..nc] of var 1..nc:nationality;
constraint alldifferent([nationality[i] | i in 1..nc]);

% Pets
int: dog = 1;
int: snail = 2;
int: fox = 3;
int: horse = 4;
int: zebra = 5;
array[1..nc] of var 1..nc:pet;
constraint alldifferent([pet[i] | i in 1..nc]);

% Drinks
int: coffee = 1;
int: tea = 2;
int: milk = 3;
int: orange = 4;
int: water = 5;
array[1..nc] of var 1..nc:drink;
constraint alldifferent([drink[i] | i in 1..nc]);

% Smokes
int: oldgold = 1;
int: kools = 2;
int: chesterfields = 3;
int: luckystrike = 4;
int: parliaments = 5;
array[1..nc] of var 1..nc:smoke;
constraint alldifferent([smoke[i] | i in 1..nc]);

% The Englishman lives in the red house.
constraint forall ([nationality[i] == eng <-> color[i] == red | i in 1..nc]);

% The Spaniard owns the dog.
constraint forall ([nationality[i] == spa <-> pet[i] == dog | i in 1..nc]);

% Coffee is drunk in the green house.
constraint forall ([color[i] == green <-> drink[i] == coffee | i in 1..nc]);

% The Ukrainian drinks tea.
constraint forall ([nationality[i] == ukr <-> drink[i] == tea | i in 1..nc]);

% The green house is immediately to the right of the ivory house.
constraint forall ([color[i] == ivory -> if i<nc then color[i+1] == green else false endif | i in 1..nc]);

% The Old Gold smoker owns snails.
constraint forall ([smoke[i] == oldgold <-> pet[i] == snail | i in 1..nc]);

% Kools are smoked in the yellow house.
constraint forall ([smoke[i] == kools <-> color[i] == yellow | i in 1..nc]);

% Milk is drunk in the middle house.
constraint drink[3] == milk;

% The Norwegian lives in the first house.
constraint nationality[1] == nor;

% The man who smokes Chesterfields lives in the house next to the man with the fox.
constraint forall ([smoke[i] == chesterfields -> (if i>1 then pet[i-1] == fox else false endif \/ if i<nc then pet[i+1] == fox else false endif) | i in 1..nc]);

% Kools are smoked in the house next to the house where the horse is kept.
constraint forall ([smoke[i] == kools -> (if i>1 then pet[i-1] == horse else false endif \/ if i<nc then pet[i+1] == horse else false endif)| i in 1..nc]);

%The Lucky Strike smoker drinks orange juice.
constraint forall ([smoke[i] == luckystrike <-> drink[i] == orange | i in 1..nc]);

% The Japanese smokes Parliaments.
constraint forall ([nationality[i] == jap <-> smoke[i] == parliaments | i in 1..nc]);

% The Norwegian lives next to the blue house.
constraint forall ([color[i] == blue -> (if i > 1 then nationality[i-1] == nor else false endif \/ if i<nc then nationality[i+1] == nor else false endif) | i in 1..nc]);

solve satisfy;

Solution:

Compiling zebra.mzn
Running zebra.mzn
color = array1d(1..5 ,[4, 5, 1, 3, 2]);
nationality = array1d(1..5 ,[4, 3, 1, 2, 5]);
pet = array1d(1..5 ,[3, 4, 2, 1, 5]);
drink = array1d(1..5 ,[5, 2, 3, 4, 1]);
smoke = array1d(1..5 ,[2, 3, 1, 4, 5]);
----------
Finished in 47msec
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.