Au lieu de deviner, j'ai décidé de regarder le code généré avec un petit morceau de code C ++ et une installation Linux quelque peu ancienne.
class MyException
{
public:
MyException() { }
~MyException() { }
};
void my_throwing_function(bool throwit)
{
if (throwit)
throw MyException();
}
void another_function();
void log(unsigned count);
void my_catching_function()
{
log(0);
try
{
log(1);
another_function();
log(2);
}
catch (const MyException& e)
{
log(3);
}
log(4);
}
Je l'ai compilé avec g++ -m32 -W -Wall -O3 -save-temps -c
et j'ai regardé le fichier d'assemblage généré.
.file "foo.cpp"
.section .text._ZN11MyExceptionD1Ev,"axG",@progbits,_ZN11MyExceptionD1Ev,comdat
.align 2
.p2align 4,,15
.weak _ZN11MyExceptionD1Ev
.type _ZN11MyExceptionD1Ev, @function
_ZN11MyExceptionD1Ev:
.LFB7:
pushl %ebp
.LCFI0:
movl %esp, %ebp
.LCFI1:
popl %ebp
ret
.LFE7:
.size _ZN11MyExceptionD1Ev, .-_ZN11MyExceptionD1Ev
_ZN11MyExceptionD1Ev
est MyException::~MyException()
, donc le compilateur a décidé qu'il avait besoin d'une copie non en ligne du destructeur.
.globl __gxx_personality_v0
.globl _Unwind_Resume
.text
.align 2
.p2align 4,,15
.globl _Z20my_catching_functionv
.type _Z20my_catching_functionv, @function
_Z20my_catching_functionv:
.LFB9:
pushl %ebp
.LCFI2:
movl %esp, %ebp
.LCFI3:
pushl %ebx
.LCFI4:
subl $20, %esp
.LCFI5:
movl $0, (%esp)
.LEHB0:
call _Z3logj
.LEHE0:
movl $1, (%esp)
.LEHB1:
call _Z3logj
call _Z16another_functionv
movl $2, (%esp)
call _Z3logj
.LEHE1:
.L5:
movl $4, (%esp)
.LEHB2:
call _Z3logj
addl $20, %esp
popl %ebx
popl %ebp
ret
.L12:
subl $1, %edx
movl %eax, %ebx
je .L16
.L14:
movl %ebx, (%esp)
call _Unwind_Resume
.LEHE2:
.L16:
.L6:
movl %eax, (%esp)
call __cxa_begin_catch
movl $3, (%esp)
.LEHB3:
call _Z3logj
.LEHE3:
call __cxa_end_catch
.p2align 4,,3
jmp .L5
.L11:
.L8:
movl %eax, %ebx
.p2align 4,,6
call __cxa_end_catch
.p2align 4,,6
jmp .L14
.LFE9:
.size _Z20my_catching_functionv, .-_Z20my_catching_functionv
.section .gcc_except_table,"a",@progbits
.align 4
.LLSDA9:
.byte 0xff
.byte 0x0
.uleb128 .LLSDATT9-.LLSDATTD9
.LLSDATTD9:
.byte 0x1
.uleb128 .LLSDACSE9-.LLSDACSB9
.LLSDACSB9:
.uleb128 .LEHB0-.LFB9
.uleb128 .LEHE0-.LEHB0
.uleb128 0x0
.uleb128 0x0
.uleb128 .LEHB1-.LFB9
.uleb128 .LEHE1-.LEHB1
.uleb128 .L12-.LFB9
.uleb128 0x1
.uleb128 .LEHB2-.LFB9
.uleb128 .LEHE2-.LEHB2
.uleb128 0x0
.uleb128 0x0
.uleb128 .LEHB3-.LFB9
.uleb128 .LEHE3-.LEHB3
.uleb128 .L11-.LFB9
.uleb128 0x0
.LLSDACSE9:
.byte 0x1
.byte 0x0
.align 4
.long _ZTI11MyException
.LLSDATT9:
Surprise! Il n'y a aucune instruction supplémentaire sur le chemin de code normal. Le compilateur a plutôt généré des blocs de code de correction hors ligne supplémentaires, référencés via une table à la fin de la fonction (qui est en fait placée dans une section distincte de l'exécutable). Tout le travail est effectué en coulisses par la bibliothèque standard, basée sur ces tables ( _ZTI11MyException
is typeinfo for MyException
).
OK, ce n'était pas vraiment une surprise pour moi, je savais déjà comment ce compilateur le faisait. Poursuivant la sortie de l'assemblage:
.text
.align 2
.p2align 4,,15
.globl _Z20my_throwing_functionb
.type _Z20my_throwing_functionb, @function
_Z20my_throwing_functionb:
.LFB8:
pushl %ebp
.LCFI6:
movl %esp, %ebp
.LCFI7:
subl $24, %esp
.LCFI8:
cmpb $0, 8(%ebp)
jne .L21
leave
ret
.L21:
movl $1, (%esp)
call __cxa_allocate_exception
movl $_ZN11MyExceptionD1Ev, 8(%esp)
movl $_ZTI11MyException, 4(%esp)
movl %eax, (%esp)
call __cxa_throw
.LFE8:
.size _Z20my_throwing_functionb, .-_Z20my_throwing_functionb
Ici, nous voyons le code pour lancer une exception. Bien qu'il n'y ait pas eu de frais généraux supplémentaires simplement parce qu'une exception pouvait être levée, il y a évidemment beaucoup de frais généraux à lancer et à attraper une exception. La majeure partie est cachée à l'intérieur__cxa_throw
, ce qui doit:
- Parcourez la pile à l'aide des tables d'exceptions jusqu'à ce qu'il trouve un gestionnaire pour cette exception.
- Déroulez la pile jusqu'à ce qu'elle atteigne ce gestionnaire.
- Appelez en fait le gestionnaire.
Comparez cela avec le coût du simple retour d'une valeur, et vous voyez pourquoi les exceptions ne devraient être utilisées que pour des retours exceptionnels.
Pour finir, le reste du fichier d'assemblage:
.weak _ZTI11MyException
.section .rodata._ZTI11MyException,"aG",@progbits,_ZTI11MyException,comdat
.align 4
.type _ZTI11MyException, @object
.size _ZTI11MyException, 8
_ZTI11MyException:
.long _ZTVN10__cxxabiv117__class_type_infoE+8
.long _ZTS11MyException
.weak _ZTS11MyException
.section .rodata._ZTS11MyException,"aG",@progbits,_ZTS11MyException,comdat
.type _ZTS11MyException, @object
.size _ZTS11MyException, 14
_ZTS11MyException:
.string "11MyException"
Les données typeinfo.
.section .eh_frame,"a",@progbits
.Lframe1:
.long .LECIE1-.LSCIE1
.LSCIE1:
.long 0x0
.byte 0x1
.string "zPL"
.uleb128 0x1
.sleb128 -4
.byte 0x8
.uleb128 0x6
.byte 0x0
.long __gxx_personality_v0
.byte 0x0
.byte 0xc
.uleb128 0x4
.uleb128 0x4
.byte 0x88
.uleb128 0x1
.align 4
.LECIE1:
.LSFDE3:
.long .LEFDE3-.LASFDE3
.LASFDE3:
.long .LASFDE3-.Lframe1
.long .LFB9
.long .LFE9-.LFB9
.uleb128 0x4
.long .LLSDA9
.byte 0x4
.long .LCFI2-.LFB9
.byte 0xe
.uleb128 0x8
.byte 0x85
.uleb128 0x2
.byte 0x4
.long .LCFI3-.LCFI2
.byte 0xd
.uleb128 0x5
.byte 0x4
.long .LCFI5-.LCFI3
.byte 0x83
.uleb128 0x3
.align 4
.LEFDE3:
.LSFDE5:
.long .LEFDE5-.LASFDE5
.LASFDE5:
.long .LASFDE5-.Lframe1
.long .LFB8
.long .LFE8-.LFB8
.uleb128 0x4
.long 0x0
.byte 0x4
.long .LCFI6-.LFB8
.byte 0xe
.uleb128 0x8
.byte 0x85
.uleb128 0x2
.byte 0x4
.long .LCFI7-.LCFI6
.byte 0xd
.uleb128 0x5
.align 4
.LEFDE5:
.ident "GCC: (GNU) 4.1.2 (Ubuntu 4.1.2-0ubuntu4)"
.section .note.GNU-stack,"",@progbits
Encore plus de tableaux de gestion des exceptions et des informations supplémentaires assorties.
Donc, la conclusion, au moins pour GCC sous Linux: le coût est de l'espace supplémentaire (pour les gestionnaires et les tables), que des exceptions soient lancées ou non, plus le coût supplémentaire d'analyse des tables et d'exécution des gestionnaires lorsqu'une exception est levée. Si vous utilisez des exceptions au lieu de codes d'erreur et qu'une erreur est rare, cela peut être plus rapide , car vous n'avez plus la charge de tester les erreurs.
Si vous souhaitez plus d'informations, en particulier ce que font toutes les __cxa_
fonctions, consultez la spécification d'origine dont elles proviennent: