L' straccesseur qui est disponible pour les pandas.Seriesobjets de dtype == objectest en fait un itérable.
Supposons que pandas.DataFrame df:
df = pd.DataFrame(dict(col=[*zip('abcdefghij', range(10, 101, 10))]))
df
col
0 (a, 10)
1 (b, 20)
2 (c, 30)
3 (d, 40)
4 (e, 50)
5 (f, 60)
6 (g, 70)
7 (h, 80)
8 (i, 90)
9 (j, 100)
Nous pouvons tester si c'est un itérable
from collections import Iterable
isinstance(df.col.str, Iterable)
True
Nous pouvons ensuite l'assigner comme nous le faisons pour d'autres itérables:
var0, var1 = 'xy'
print(var0, var1)
x y
La solution la plus simple
Donc, en une seule ligne, nous pouvons affecter les deux colonnes
df['a'], df['b'] = df.col.str
df
col a b
0 (a, 10) a 10
1 (b, 20) b 20
2 (c, 30) c 30
3 (d, 40) d 40
4 (e, 50) e 50
5 (f, 60) f 60
6 (g, 70) g 70
7 (h, 80) h 80
8 (i, 90) i 90
9 (j, 100) j 100
Solution plus rapide
Seulement un peu plus compliqué, nous pouvons utiliser zippour créer un itérable similaire
df['c'], df['d'] = zip(*df.col)
df
col a b c d
0 (a, 10) a 10 a 10
1 (b, 20) b 20 b 20
2 (c, 30) c 30 c 30
3 (d, 40) d 40 d 40
4 (e, 50) e 50 e 50
5 (f, 60) f 60 f 60
6 (g, 70) g 70 g 70
7 (h, 80) h 80 h 80
8 (i, 90) i 90 i 90
9 (j, 100) j 100 j 100
En ligne
Signification, ne pas muter l'existant df
Cela fonctionne car assignprend des arguments de mot-clé où les mots-clés sont les noms de colonne nouveaux (ou existants) et les valeurs seront les valeurs de la nouvelle colonne. Vous pouvez utiliser un dictionnaire et le décompresser avec **et le faire agir comme arguments de mot-clé. C'est donc une façon intelligente d'attribuer une nouvelle colonne nommée 'g'qui est le premier élément de l' df.col.stritérable et 'h'qui est le deuxième élément de l' df.col.stritérable.
df.assign(**dict(zip('gh', df.col.str)))
col g h
0 (a, 10) a 10
1 (b, 20) b 20
2 (c, 30) c 30
3 (d, 40) d 40
4 (e, 50) e 50
5 (f, 60) f 60
6 (g, 70) g 70
7 (h, 80) h 80
8 (i, 90) i 90
9 (j, 100) j 100
Ma version de l' listapproche
Avec une compréhension de liste moderne et un déballage variable.
Remarque: également en ligne en utilisantjoin
df.join(pd.DataFrame([*df.col], df.index, [*'ef']))
col g h
0 (a, 10) a 10
1 (b, 20) b 20
2 (c, 30) c 30
3 (d, 40) d 40
4 (e, 50) e 50
5 (f, 60) f 60
6 (g, 70) g 70
7 (h, 80) h 80
8 (i, 90) i 90
9 (j, 100) j 100
La version mutante serait
df[['e', 'f']] = pd.DataFrame([*df.col], df.index)
Test de temps naïf
DataFrame court
Utilisez celui défini ci-dessus
%timeit df.assign(**dict(zip('gh', df.col.str)))
%timeit df.assign(**dict(zip('gh', zip(*df.col))))
%timeit df.join(pd.DataFrame([*df.col], df.index, [*'gh']))
1.16 ms ± 21.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
635 µs ± 18.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
795 µs ± 42.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
Long DataFrame
10 ^ 3 fois plus grand
df = pd.concat([df] * 1000, ignore_index=True)
%timeit df.assign(**dict(zip('gh', df.col.str)))
%timeit df.assign(**dict(zip('gh', zip(*df.col))))
%timeit df.join(pd.DataFrame([*df.col], df.index, [*'gh']))
11.4 ms ± 1.53 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.1 ms ± 41.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
2.33 ms ± 35.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)