Comment implémenter un arbre binaire?


104

Quelle est la meilleure structure de données pouvant être utilisée pour implémenter un arbre binaire en Python?


2
Beaucoup de solutions ici implémentent BST mais ont posé des questions sur l'implémentation de Biner Tree
vikas mehta

Peut-être spécifier que vous voulez l'algorithme d'arbre en Python dans le titre de la question?
Ken Tran

Réponses:


97

Voici ma simple implémentation récursive de l'arbre de recherche binaire.

#!/usr/bin/python

class Node:
    def __init__(self, val):
        self.l = None
        self.r = None
        self.v = val

class Tree:
    def __init__(self):
        self.root = None

    def getRoot(self):
        return self.root

    def add(self, val):
        if self.root is None:
            self.root = Node(val)
        else:
            self._add(val, self.root)

    def _add(self, val, node):
        if val < node.v:
            if node.l is not None:
                self._add(val, node.l)
            else:
                node.l = Node(val)
        else:
            if node.r is not None:
                self._add(val, node.r)
            else:
                node.r = Node(val)

    def find(self, val):
        if self.root is not None:
            return self._find(val, self.root)
        else:
            return None

    def _find(self, val, node):
        if val == node.v:
            return node
        elif (val < node.v and node.l is not None):
            self._find(val, node.l)
        elif (val > node.v and node.r is not None):
            self._find(val, node.r)

    def deleteTree(self):
        # garbage collector will do this for us. 
        self.root = None

    def printTree(self):
        if self.root is not None:
            self._printTree(self.root)

    def _printTree(self, node):
        if node is not None:
            self._printTree(node.l)
            print(str(node.v) + ' ')
            self._printTree(node.r)

#     3
# 0     4
#   2      8
tree = Tree()
tree.add(3)
tree.add(4)
tree.add(0)
tree.add(8)
tree.add(2)
tree.printTree()
print(tree.find(3).v)
print(tree.find(10))
tree.deleteTree()
tree.printTree()

19
Belle mise en œuvre. Je suis juste ici pour souligner quelques trucs de style . python le fait généralement à la node is not Noneplace de votre (node!=None). En outre, vous pouvez utiliser la __str__fonction au lieu de la méthode printTree.
Jeff Mandell

2
De plus, votre _trouver devrait probablement être: def _find(self, val, node): if(val == node.v): return node elif(val < node.v and node.l != None): return self._find(val, node.l) elif(val > node.v and node.r != None): return self._find(val, node.r)
darkhipo

4
N'est-ce pas un arbre de recherche binaire où left<=root<=right?
Sagar Shah

3
tree.find (0), tree.find (2), tree.find (4), tree.find (8) retournent tous Aucun.
Tony Wang

3
Il y a un petit bogue, lorsque vous essayez d'insérer une clé existante, elle descend dans l'arborescence pour créer un nouveau nœud avec une clé en double.
Diego Gallegos

27
# simple binary tree
# in this implementation, a node is inserted between an existing node and the root


class BinaryTree():

    def __init__(self,rootid):
      self.left = None
      self.right = None
      self.rootid = rootid

    def getLeftChild(self):
        return self.left
    def getRightChild(self):
        return self.right
    def setNodeValue(self,value):
        self.rootid = value
    def getNodeValue(self):
        return self.rootid

    def insertRight(self,newNode):
        if self.right == None:
            self.right = BinaryTree(newNode)
        else:
            tree = BinaryTree(newNode)
            tree.right = self.right
            self.right = tree

    def insertLeft(self,newNode):
        if self.left == None:
            self.left = BinaryTree(newNode)
        else:
            tree = BinaryTree(newNode)
            tree.left = self.left
            self.left = tree


def printTree(tree):
        if tree != None:
            printTree(tree.getLeftChild())
            print(tree.getNodeValue())
            printTree(tree.getRightChild())



# test tree

def testTree():
    myTree = BinaryTree("Maud")
    myTree.insertLeft("Bob")
    myTree.insertRight("Tony")
    myTree.insertRight("Steven")
    printTree(myTree)

En savoir plus ici: -Il s'agit d'une implémentation très simple d'un arbre binaire.

Ceci est un beau tutoriel avec des questions entre les deux


2
Le code dans insertLeftest cassé et produira une boucle infinie sur toute tentative de traverser récursivement la branche la plus à gauche de l'arbre binaire
talonmies

2
Il peut être facilement réparé en échangeant les lignes suivantes: tree.left = self.left self.left = tree
AirelleJab

1
le dernier lien est rompu. Peux-tu le réparer.
Arjee

13

[Ce dont vous avez besoin pour les interviews] Une classe Node est la structure de données suffisante pour représenter un arbre binaire.

(Alors que les autres réponses sont pour la plupart correctes, elles ne sont pas nécessaires pour un arbre binaire: pas besoin d'étendre la classe d'objets, pas besoin d'être un BST, pas besoin d'importer deque).

class Node:

    def __init__(self, value = None):
        self.left  = None
        self.right = None
        self.value = value

Voici un exemple d'arbre:

n1 = Node(1)
n2 = Node(2)
n3 = Node(3)
n1.left  = n2
n1.right = n3

Dans cet exemple, n1 est la racine de l'arbre ayant n2, n3 comme enfants.

entrez la description de l'image ici


Cela ajoute-t-il quelque chose au-delà de ce qui est déjà décrit dans les nombreuses autres réponses?
Sneftel le

4
@Sneftel D'autres réponses sont trop sophistiquées pour un arbre binaire. C'est la pièce requise qui est nécessaire pour une implémentation d'arbre binaire. D'autres réponses rendent la compréhension trop difficile pour les nouvelles personnes, alors j'ai pensé poster le strict minimum pour aider les nouvelles personnes. Certaines des autres réponses sont bonnes pour les articles et les journaux;) C'est aussi la pièce dont quelqu'un a besoin pour les interviews de logiciels.
apadana le

3
Cela ajoute de la simplicité, ce qui est précieux.
pylang

2
Simple et très logique. Génial. Je l'ai aimé!
Apostolos le

11

Implémentation simple de BST en Python

class TreeNode:
    def __init__(self, value):
        self.left = None
        self.right = None
        self.data = value

class Tree:
    def __init__(self):
        self.root = None

    def addNode(self, node, value):
        if(node==None):
            self.root = TreeNode(value)
        else:
            if(value<node.data):
                if(node.left==None):
                    node.left = TreeNode(value)
                else:
                    self.addNode(node.left, value)
            else:
                if(node.right==None):
                    node.right = TreeNode(value)
                else:
                    self.addNode(node.right, value)

    def printInorder(self, node):
        if(node!=None):
            self.printInorder(node.left)
            print(node.data)
            self.printInorder(node.right)

def main():
    testTree = Tree()
    testTree.addNode(testTree.root, 200)
    testTree.addNode(testTree.root, 300)
    testTree.addNode(testTree.root, 100)
    testTree.addNode(testTree.root, 30)
    testTree.printInorder(testTree.root)

2
Vous avez terminé certaines phrases par un point-virgule et d'autres sans point-virgule. Pouvez-vous expliquer la raison de cela? PS - Je suis un débutant en Python, c'est pourquoi poser une question aussi fondamentale.
outlier229

@ outlier229 Tous les points-virgules dans le code ci-dessus sont facultatifs, les supprimer ne change rien. Je suppose que Fox est simplement habitué à coder un langage comme C ++ ou Java, qui nécessitent le point-virgule à la fin de la ligne. En plus de cette utilisation facultative, les points-virgules peuvent être utilisés pour enchaîner les instructions sur une seule ligne. Par exemple a = 1; b = 2; c = 3 serait une seule ligne valide en python.
physiqueGuy

8

Une manière très rapide d'implémenter un arbre binaire en utilisant des listes. Ce n'est pas le plus efficace et il ne gère pas trop bien les valeurs nulles. Mais c'est très transparent (du moins pour moi):

def _add(node, v):
    new = [v, [], []]
    if node:
        left, right = node[1:]
        if not left:
            left.extend(new)
        elif not right:
            right.extend(new)
        else:
            _add(left, v)
    else:
        node.extend(new)

def binary_tree(s):
    root = []
    for e in s:
        _add(root, e)
    return root

def traverse(n, order):
    if n:
        v = n[0]
        if order == 'pre':
            yield v
        for left in traverse(n[1], order):
            yield left
        if order == 'in':
            yield v
        for right in traverse(n[2], order):
            yield right
        if order == 'post':
            yield v

Construire un arbre à partir d'un itérable:

 >>> tree = binary_tree('A B C D E'.split())
 >>> print tree
 ['A', ['B', ['D', [], []], ['E', [], []]], ['C', [], []]]

Traverser un arbre:

 >>> list(traverse(tree, 'pre')), list(traverse(tree, 'in')), list(traverse(tree, 'post'))
 (['A', 'B', 'D', 'E', 'C'],
  ['D', 'B', 'E', 'A', 'C'],
  ['D', 'E', 'B', 'C', 'A'])

Très agréable! Je n'ai pas pu m'empêcher de dire que l'arbre résultant ne contient pas l'invariant selon lequel tous les éléments du sous-arbre de gauche sont inférieurs à v. - Une propriété importante pour les arbres de recherche binaires. (Oui je me rends compte qu'OP n'a pas demandé un "arbre de recherche") cependant, FWIW cela peut être fait avec une simple modification de l'enregistrement dans _add (). Ensuite, votre parcours inorder donne une liste triée.
thayne

6

Je ne peux pas m'empêcher de remarquer que la plupart des réponses ici implémentent un arbre de recherche binaire. Arbre de recherche binaire! = Arbre binaire.

  • Un arbre de recherche binaire a une propriété très spécifique: pour tout nœud X, la clé de X est plus grande que la clé de tout descendant de son enfant gauche, et plus petite que la clé de tout descendant de son enfant droit.

  • Un arbre binaire n'impose aucune restriction de ce type. Un arbre binaire est simplement une structure de données avec un élément «clé» et deux enfants, disons «gauche» et «droite».

  • Un arbre est un cas encore plus général d'arbre binaire où chaque nœud peut avoir un nombre arbitraire d'enfants. En règle générale, chaque nœud a un élément 'children' qui est de type liste / tableau.

Maintenant, pour répondre à la question du PO, j'inclus une implémentation complète d'un arbre binaire en Python. La structure de données sous-jacente stockant chaque BinaryTreeNode est un dictionnaire, étant donné qu'elle offre des recherches O (1) optimales. J'ai également implémenté des traversées en profondeur d'abord et en largeur d'abord. Ce sont des opérations très courantes effectuées sur les arbres.

from collections import deque

class BinaryTreeNode:
    def __init__(self, key, left=None, right=None):
        self.key = key
        self.left = left
        self.right = right

    def __repr__(self):
        return "%s l: (%s) r: (%s)" % (self.key, self.left, self.right)

    def __eq__(self, other):
        if self.key == other.key and \
            self.right == other.right and \
                self.left == other.left:
            return True
        else:
            return False

class BinaryTree:
    def __init__(self, root_key=None):
        # maps from BinaryTreeNode key to BinaryTreeNode instance.
        # Thus, BinaryTreeNode keys must be unique.
        self.nodes = {}
        if root_key is not None:
            # create a root BinaryTreeNode
            self.root = BinaryTreeNode(root_key)
            self.nodes[root_key] = self.root

    def add(self, key, left_key=None, right_key=None):
        if key not in self.nodes:
            # BinaryTreeNode with given key does not exist, create it
            self.nodes[key] = BinaryTreeNode(key)
        # invariant: self.nodes[key] exists

        # handle left child
        if left_key is None:
            self.nodes[key].left = None
        else:
            if left_key not in self.nodes:
                self.nodes[left_key] = BinaryTreeNode(left_key)
            # invariant: self.nodes[left_key] exists
            self.nodes[key].left = self.nodes[left_key]

        # handle right child
        if right_key == None:
            self.nodes[key].right = None
        else:
            if right_key not in self.nodes:
                self.nodes[right_key] = BinaryTreeNode(right_key)
            # invariant: self.nodes[right_key] exists
            self.nodes[key].right = self.nodes[right_key]

    def remove(self, key):
        if key not in self.nodes:
            raise ValueError('%s not in tree' % key)
        # remove key from the list of nodes
        del self.nodes[key]
        # if node removed is left/right child, update parent node
        for k in self.nodes:
            if self.nodes[k].left and self.nodes[k].left.key == key:
                self.nodes[k].left = None
            if self.nodes[k].right and self.nodes[k].right.key == key:
                self.nodes[k].right = None
        return True

    def _height(self, node):
        if node is None:
            return 0
        else:
            return 1 + max(self._height(node.left), self._height(node.right))

    def height(self):
        return self._height(self.root)

    def size(self):
        return len(self.nodes)

    def __repr__(self):
        return str(self.traverse_inorder(self.root))

    def bfs(self, node):
        if not node or node not in self.nodes:
            return
        reachable = []    
        q = deque()
        # add starting node to queue
        q.append(node)
        while len(q):
            visit = q.popleft()
            # add currently visited BinaryTreeNode to list
            reachable.append(visit)
            # add left/right children as needed
            if visit.left:
                q.append(visit.left)
            if visit.right:
                q.append(visit.right)
        return reachable

    # visit left child, root, then right child
    def traverse_inorder(self, node, reachable=None):
        if not node or node.key not in self.nodes:
            return
        if reachable is None:
            reachable = []
        self.traverse_inorder(node.left, reachable)
        reachable.append(node.key)
        self.traverse_inorder(node.right, reachable)
        return reachable

    # visit left and right children, then root
    # root of tree is always last to be visited
    def traverse_postorder(self, node, reachable=None):
        if not node or node.key not in self.nodes:
            return
        if reachable is None:
            reachable = []
        self.traverse_postorder(node.left, reachable)
        self.traverse_postorder(node.right, reachable)
        reachable.append(node.key)
        return reachable

    # visit root, left, then right children
    # root is always visited first
    def traverse_preorder(self, node, reachable=None):
        if not node or node.key not in self.nodes:
            return
        if reachable is None:
            reachable = []
        reachable.append(node.key)
        self.traverse_preorder(node.left, reachable)
        self.traverse_preorder(node.right, reachable)
        return reachable

4

vous n'avez pas besoin d'avoir deux cours

class Tree:
    val = None
    left = None
    right = None

    def __init__(self, val):
        self.val = val


    def insert(self, val):
        if self.val is not None:
            if val < self.val:
                if self.left is not None:
                    self.left.insert(val)
                else:
                    self.left = Tree(val)
            elif val > self.val:
                if self.right is not None:
                    self.right.insert(val)
                else:
                    self.right = Tree(val)
            else:
                return
        else:
            self.val = val
            print("new node added")

    def showTree(self):
        if self.left is not None:
            self.left.showTree()
        print(self.val, end = ' ')
        if self.right is not None:
            self.right.showTree()

7
Il vaut mieux avoir deux classes. C'est une meilleure mise en œuvre

1
@ user3022012 votre commentaire est tout simplement faux. par définition, un arbre est composé de données et de sous-arbres (pour un arbre binaire, ce sont deux sous-arbres), qui sont également des arbres. Aucune raison, que ce soit, d'arborer le nœud racine différemment.
guyarad

1
l'affiche originale ne demandait qu'une implémentation d'arbre binaire et non un arbre de recherche binaire ...
guyarad

2

Un peu plus "pythonique"?

class Node:
    def __init__(self, value):
        self.value = value
        self.left = None
        self.right = None

    def __repr__(self):
        return str(self.value)



class BST:
    def __init__(self):
        self.root = None

    def __repr__(self):
        self.sorted = []
        self.get_inorder(self.root)
        return str(self.sorted)

    def get_inorder(self, node):
        if node:
            self.get_inorder(node.left)
            self.sorted.append(str(node.value))
            self.get_inorder(node.right)

    def add(self, value):
        if not self.root:
            self.root = Node(value)
        else:
            self._add(self.root, value)

    def _add(self, node, value):
        if value <= node.value:
            if node.left:
                self._add(node.left, value)
            else:
                node.left = Node(value)
        else:
            if node.right:
                self._add(node.right, value)
            else:
                node.right = Node(value)



from random import randint

bst = BST()

for i in range(100):
    bst.add(randint(1, 1000))
print (bst)

2
#!/usr/bin/python

class BinaryTree:
    def __init__(self, left, right, data):
        self.left = left
        self.right = right
        self.data = data


    def pre_order_traversal(root):
        print(root.data, end=' ')

        if root.left != None:
            pre_order_traversal(root.left)

        if root.right != None:
            pre_order_traversal(root.right)

    def in_order_traversal(root):
        if root.left != None:
            in_order_traversal(root.left)
        print(root.data, end=' ')
        if root.right != None:
            in_order_traversal(root.right)

    def post_order_traversal(root):
        if root.left != None:
            post_order_traversal(root.left)
        if root.right != None:
            post_order_traversal(root.right)
        print(root.data, end=' ')

Le parcours de pré-commande est erroné: vous devez tester chaque branche séparément.
Svante

Je pense que vous devez tester chaque branche séparément uniquement en cas de commande et après commande. méthode de pré-commande que j'ai écrite, donne le bon résultat. Pouvez-vous me dire dans quel cas cette méthode échouera? Cependant, permettez-moi de tester les deux branches séparément, comme je l'ai fait pour la post-commande et la commande
jarret

Comme c'était le cas, si l'enfant de gauche était Aucun, il ne regarderait même pas l'enfant de droite.
Svante

Je veux dire, si l'enfant gauche d'un arbre binaire est aucun, nous pouvons supposer que l'enfant droit n'est pas non plus. Si un nœud se ramifie en 2 et seulement 2 nœuds, et que celui de gauche est Aucun, celui de droite sera également Aucun.
eshanrh

2

Une Nodeclasse basée sur des nœuds connectés est une approche standard. Ceux-ci peuvent être difficiles à visualiser.

Motivé par un essai sur les modèles Python - Implémentation de graphiques , considérez un dictionnaire simple:

Donné

Un arbre binaire

               a
              / \
             b   c
            / \   \
           d   e   f

Code

Créez un dictionnaire de nœuds uniques :

tree = {
   "a": ["b", "c"],
   "b": ["d", "e"],
   "c": [None, "f"],
   "d": [None, None],
   "e": [None, None],
   "f": [None, None],
}

Détails

  • Chaque paire clé-valeur est un nœud unique pointant vers ses enfants.
  • Une liste (ou un tuple) contient une paire ordonnée d'enfants gauche / droite.
  • Avec un dict ayant une insertion ordonnée , supposons que la première entrée soit la racine.
  • Les méthodes courantes peuvent être des fonctions qui mutent ou traversent le dict (voir find_all_paths()).

Les fonctions basées sur une arborescence incluent souvent les opérations courantes suivantes:

  • traversée : donne chaque nœud dans un ordre donné (généralement de gauche à droite)
    • recherche en largeur d'abord (BFS): niveaux de traversée
    • Recherche en profondeur d'abord (DFS): traversez d'abord les branches (pré- / dans / post-ordre)
  • insert : ajoute un nœud à l'arborescence en fonction du nombre d'enfants
  • remove : supprime un nœud en fonction du nombre d'enfants
  • mise à jour : fusionne les nœuds manquants d'une arborescence à l'autre
  • visit : donne la valeur d'un nœud traversé

Essayez de mettre en œuvre toutes ces opérations. Ici, nous démontrons l' une de ces fonctions - un parcours BFS:

Exemple

import collections as ct


def traverse(tree):
    """Yield nodes from a tree via BFS."""
    q = ct.deque()                                         # 1
    root = next(iter(tree))                                # 2
    q.append(root)

    while q:
        node = q.popleft()
        children = filter(None, tree.get(node))
        for n in children:                                 # 3 
            q.append(n)
        yield node

list(traverse(tree))
# ['a', 'b', 'c', 'd', 'e', 'f']

Il s'agit d'un algorithme de recherche en largeur (ordre de niveau) appliqué à un dict de nœuds et d'enfants.

  1. Initialisez une file d'attente FIFO . Nous utilisons a deque, mais a queueou a listfonctionne (ce dernier est inefficace).
  2. Obtenez et mettez en file d'attente le nœud racine (suppose que la racine est la première entrée du dict, Python 3.6+).
  3. Retirer de manière itérative un nœud, mettre ses enfants en file d'attente et donner la valeur du nœud.

Voir également ce didacticiel détaillé sur les arbres.


Perspicacité

Quelque chose de génial à propos des traversées en général, nous pouvons facilement modifier cette dernière approche itérative de la recherche en profondeur d'abord (DFS) en remplaçant simplement la file d'attente par une pile (alias LIFO Queue). Cela signifie simplement que nous sortons de la file d'attente du même côté que nous mettons en file d'attente. DFS nous permet de rechercher chaque branche.

Comment? Puisque nous utilisons a deque, nous pouvons émuler une pile en modifiantnode = q.popleft() en node = q.pop()(à droite). Le résultat est un droit favorisée, précommandé DFS : ['a', 'c', 'f', 'b', 'e', 'd'].


1
import random

class TreeNode:
    def __init__(self, key):
        self.key = key
        self.left = None
        self.right = None
        self.p = None

class BinaryTree:
    def __init__(self):
        self.root = None

    def length(self):
        return self.size

    def inorder(self, node):
        if node == None:
            return None
        else:
            self.inorder(node.left)
            print node.key,
            self.inorder(node.right)

    def search(self, k):
        node = self.root
        while node != None:
            if node.key == k:
                return node
            if node.key > k:
                node = node.left
            else:
                node = node.right
        return None

    def minimum(self, node):
        x = None
        while node.left != None:
            x = node.left
            node = node.left
        return x

    def maximum(self, node):
        x = None
        while node.right != None:
            x = node.right
            node = node.right
        return x

    def successor(self, node):
        parent = None
        if node.right != None:
            return self.minimum(node.right)
        parent = node.p
        while parent != None and node == parent.right:
            node = parent
            parent = parent.p
        return parent

    def predecessor(self, node):
        parent = None
        if node.left != None:
            return self.maximum(node.left)
        parent = node.p
        while parent != None and node == parent.left:
            node = parent
            parent = parent.p
        return parent

    def insert(self, k):
        t = TreeNode(k)
        parent = None
        node = self.root
        while node != None:
            parent = node
            if node.key > t.key:
                node = node.left
            else:
                node = node.right
        t.p = parent
        if parent == None:
            self.root = t
        elif t.key < parent.key:
            parent.left = t
        else:
            parent.right = t
        return t


    def delete(self, node):
        if node.left == None:
            self.transplant(node, node.right)
        elif node.right == None:
            self.transplant(node, node.left)
        else:
            succ = self.minimum(node.right)
            if succ.p != node:
                self.transplant(succ, succ.right)
                succ.right = node.right
                succ.right.p = succ
            self.transplant(node, succ)
            succ.left = node.left
            succ.left.p = succ

    def transplant(self, node, newnode):
        if node.p == None:
            self.root = newnode
        elif node == node.p.left:
            node.p.left = newnode
        else:
            node.p.right = newnode
        if newnode != None:
            newnode.p = node.p

Après avoir exécuté cela, les nouveaux nœuds z, y, x, w, u, v pourraient parfois être assignés, parfois auraient des bogues, comme ceci: print u.key AttributeError: l'objet 'NoneType' n'a pas d'attribut 'key' Je me demande comment pour le réparer, merci
eau0

1

Cette implémentation prend en charge les opérations d'insertion, de recherche et de suppression sans détruire la structure de l'arborescence. Ce n'est pas un arbre banlancé.

# Class for construct the nodes of the tree. (Subtrees)
class Node:
def __init__(self, key, parent_node = None):
    self.left = None
    self.right = None
    self.key = key
    if parent_node == None:
        self.parent = self
    else:
        self.parent = parent_node

# Class with the  structure of the tree. 
# This Tree is not balanced.
class Tree:
def __init__(self):
    self.root = None

# Insert a single element
def insert(self, x):
    if(self.root == None):
        self.root = Node(x)
    else:
        self._insert(x, self.root)

def _insert(self, x, node):
    if(x < node.key):
        if(node.left == None):
            node.left = Node(x, node)
        else:
            self._insert(x, node.left)
    else:
        if(node.right == None):
            node.right = Node(x, node)
        else:
            self._insert(x, node.right)

# Given a element, return a node in the tree with key x. 
def find(self, x):
    if(self.root == None):
        return None
    else:
        return self._find(x, self.root)
def _find(self, x, node):
    if(x == node.key):
        return node
    elif(x < node.key):
        if(node.left == None):
            return None
        else:
            return self._find(x, node.left)
    elif(x > node.key):
        if(node.right == None):
            return None
        else:
            return self._find(x, node.right)

# Given a node, return the node in the tree with the next largest element.
def next(self, node):
    if node.right != None:
        return self._left_descendant(node.right)
    else:
        return self._right_ancestor(node)

def _left_descendant(self, node):
    if node.left == None:
        return node
    else:
        return self._left_descendant(node.left)

def _right_ancestor(self, node):
    if node.key <= node.parent.key:
        return node.parent
    else:
        return self._right_ancestor(node.parent)

# Delete an element of the tree
def delete(self, x):
    node = self.find(x)
    if node == None:
        print(x, "isn't in the tree")
    else:
        if node.right == None:
            if node.left == None:
                if node.key < node.parent.key:
                    node.parent.left = None
                    del node # Clean garbage
                else:
                    node.parent.right = None
                    del Node # Clean garbage
            else:
                node.key = node.left.key
                node.left = None
        else:
            x = self.next(node)
            node.key = x.key
            x = None


# tests
t = Tree()
t.insert(5)
t.insert(8)
t.insert(3)
t.insert(4)
t.insert(6)
t.insert(2)

t.delete(8)
t.delete(5)

t.insert(9)
t.insert(1)

t.delete(2)
t.delete(100)

# Remember: Find method return the node object. 
# To return a number use t.find(nº).key
# But it will cause an error if the number is not in the tree.
print(t.find(5)) 
print(t.find(8))
print(t.find(4))
print(t.find(6))
print(t.find(9))

1

Je sais que de nombreuses bonnes solutions ont déjà été publiées mais j'ai généralement une approche différente pour les arbres binaires: utiliser une classe Node et l'implémenter directement est plus lisible, mais lorsque vous avez beaucoup de nœuds, cela peut devenir très gourmand en mémoire, alors je suggérez d'ajouter une couche de complexité et de stocker les nœuds dans une liste python, puis de simuler un comportement d'arbre en utilisant uniquement la liste.

Vous pouvez toujours définir une classe Node pour finalement représenter les nœuds dans l'arborescence lorsque cela est nécessaire, mais les garder sous une forme simple [valeur, gauche, droite] dans une liste utilisera la moitié de la mémoire ou moins!

Voici un exemple rapide d'une classe d'arbre de recherche binaire stockant les nœuds dans un tableau. Il fournit des fonctions de base telles que l'ajout, la suppression, la recherche ...

"""
Basic Binary Search Tree class without recursion...
"""

__author__ = "@fbparis"

class Node(object):
    __slots__ = "value", "parent", "left", "right"
    def __init__(self, value, parent=None, left=None, right=None):
        self.value = value
        self.parent = parent
        self.left = left
        self.right = right

    def __repr__(self):
        return "<%s object at %s: parent=%s, left=%s, right=%s, value=%s>" % (self.__class__.__name__, hex(id(self)), self.parent, self.left, self.right, self.value)

class BinarySearchTree(object):
    __slots__ = "_tree"
    def __init__(self, *args):
        self._tree = []
        if args:
            for x in args[0]:
                self.add(x)

    def __len__(self):
        return len(self._tree)

    def __repr__(self):
        return "<%s object at %s with %d nodes>" % (self.__class__.__name__, hex(id(self)), len(self))

    def __str__(self, nodes=None, level=0):
        ret = ""
        if nodes is None:
            if len(self):
                nodes = [0]
            else:
                nodes = []
        for node in nodes:
            if node is None:
                continue
            ret += "-" * level + " %s\n" % self._tree[node][0]
            ret += self.__str__(self._tree[node][2:4], level + 1)
        if level == 0:
            ret = ret.strip()
        return ret

    def __contains__(self, value):
        if len(self):
            node_index = 0
            while self._tree[node_index][0] != value:
                if value < self._tree[node_index][0]:
                    node_index = self._tree[node_index][2]
                else:
                    node_index = self._tree[node_index][3]
                if node_index is None:
                    return False
            return True
        return False

    def __eq__(self, other):
        return self._tree == other._tree

    def add(self, value):
        if len(self):
            node_index = 0
            while self._tree[node_index][0] != value:
                if value < self._tree[node_index][0]:
                    b = self._tree[node_index][2]
                    k = 2
                else:
                    b = self._tree[node_index][3]
                    k = 3
                if b is None:
                    self._tree[node_index][k] = len(self)
                    self._tree.append([value, node_index, None, None])
                    break
                node_index = b
        else:
            self._tree.append([value, None, None, None])

    def remove(self, value):
        if len(self):
            node_index = 0
            while self._tree[node_index][0] != value:
                if value < self._tree[node_index][0]:
                    node_index = self._tree[node_index][2]
                else:
                    node_index = self._tree[node_index][3]
                if node_index is None:
                    raise KeyError
            if self._tree[node_index][2] is not None:
                b, d = 2, 3
            elif self._tree[node_index][3] is not None:
                b, d = 3, 2
            else:
                i = node_index
                b = None
            if b is not None:
                i = self._tree[node_index][b]
                while self._tree[i][d] is not None:
                    i = self._tree[i][d]
                p = self._tree[i][1]
                b = self._tree[i][b]
                if p == node_index:
                    self._tree[p][5-d] = b
                else:
                    self._tree[p][d] = b
                if b is not None:
                    self._tree[b][1] = p
                self._tree[node_index][0] = self._tree[i][0]
            else:
                p = self._tree[i][1]
                if p is not None:
                    if self._tree[p][2] == i:
                        self._tree[p][2] = None
                    else:
                        self._tree[p][3] = None
            last = self._tree.pop()
            n = len(self)
            if i < n:
                self._tree[i] = last[:]
                if last[2] is not None:
                    self._tree[last[2]][1] = i
                if last[3] is not None:
                    self._tree[last[3]][1] = i
                if self._tree[last[1]][2] == n:
                    self._tree[last[1]][2] = i
                else:
                    self._tree[last[1]][3] = i
        else:
            raise KeyError

    def find(self, value):
        if len(self):
            node_index = 0
            while self._tree[node_index][0] != value:
                if value < self._tree[node_index][0]:
                    node_index = self._tree[node_index][2]
                else:
                    node_index = self._tree[node_index][3]
                if node_index is None:
                    return None
            return Node(*self._tree[node_index])
        return None

J'ai ajouté un attribut parent afin que vous puissiez supprimer n'importe quel nœud et conserver la structure BST.

Désolé pour la lisibilité, en particulier pour la fonction "supprimer". En gros, lorsqu'un nœud est supprimé, nous pop le tableau d'arborescence et le remplaçons par le dernier élément (sauf si nous voulions supprimer le dernier nœud). Pour maintenir la structure BST, le nœud supprimé est remplacé par le max de ses enfants de gauche ou par le min de ses enfants de droite et certaines opérations doivent être effectuées afin de garder les index valides mais c'est assez rapide.

J'ai utilisé cette technique pour des choses plus avancées pour créer des dictionnaires de gros mots avec un trie radix interne et j'ai pu diviser la consommation de mémoire par 7-8 (vous pouvez voir un exemple ici: https://gist.github.com/fbparis / b3ddd5673b603b42c880974b23db7cda )


0

Une bonne implémentation de l' arbre de recherche binaire , tirée d' ici :

'''
A binary search Tree
'''
from __future__ import print_function
class Node:

    def __init__(self, label, parent):
        self.label = label
        self.left = None
        self.right = None
        #Added in order to delete a node easier
        self.parent = parent

    def getLabel(self):
        return self.label

    def setLabel(self, label):
        self.label = label

    def getLeft(self):
        return self.left

    def setLeft(self, left):
        self.left = left

    def getRight(self):
        return self.right

    def setRight(self, right):
        self.right = right

    def getParent(self):
        return self.parent

    def setParent(self, parent):
        self.parent = parent

class BinarySearchTree:

    def __init__(self):
        self.root = None

    def insert(self, label):
        # Create a new Node
        new_node = Node(label, None)
        # If Tree is empty
        if self.empty():
            self.root = new_node
        else:
            #If Tree is not empty
            curr_node = self.root
            #While we don't get to a leaf
            while curr_node is not None:
                #We keep reference of the parent node
                parent_node = curr_node
                #If node label is less than current node
                if new_node.getLabel() < curr_node.getLabel():
                #We go left
                    curr_node = curr_node.getLeft()
                else:
                    #Else we go right
                    curr_node = curr_node.getRight()
            #We insert the new node in a leaf
            if new_node.getLabel() < parent_node.getLabel():
                parent_node.setLeft(new_node)
            else:
                parent_node.setRight(new_node)
            #Set parent to the new node
            new_node.setParent(parent_node)      

    def delete(self, label):
        if (not self.empty()):
            #Look for the node with that label
            node = self.getNode(label)
            #If the node exists
            if(node is not None):
                #If it has no children
                if(node.getLeft() is None and node.getRight() is None):
                    self.__reassignNodes(node, None)
                    node = None
                #Has only right children
                elif(node.getLeft() is None and node.getRight() is not None):
                    self.__reassignNodes(node, node.getRight())
                #Has only left children
                elif(node.getLeft() is not None and node.getRight() is None):
                    self.__reassignNodes(node, node.getLeft())
                #Has two children
                else:
                    #Gets the max value of the left branch
                    tmpNode = self.getMax(node.getLeft())
                    #Deletes the tmpNode
                    self.delete(tmpNode.getLabel())
                    #Assigns the value to the node to delete and keesp tree structure
                    node.setLabel(tmpNode.getLabel())

    def getNode(self, label):
        curr_node = None
        #If the tree is not empty
        if(not self.empty()):
            #Get tree root
            curr_node = self.getRoot()
            #While we don't find the node we look for
            #I am using lazy evaluation here to avoid NoneType Attribute error
            while curr_node is not None and curr_node.getLabel() is not label:
                #If node label is less than current node
                if label < curr_node.getLabel():
                    #We go left
                    curr_node = curr_node.getLeft()
                else:
                    #Else we go right
                    curr_node = curr_node.getRight()
        return curr_node

    def getMax(self, root = None):
        if(root is not None):
            curr_node = root
        else:
            #We go deep on the right branch
            curr_node = self.getRoot()
        if(not self.empty()):
            while(curr_node.getRight() is not None):
                curr_node = curr_node.getRight()
        return curr_node

    def getMin(self, root = None):
        if(root is not None):
            curr_node = root
        else:
            #We go deep on the left branch
            curr_node = self.getRoot()
        if(not self.empty()):
            curr_node = self.getRoot()
            while(curr_node.getLeft() is not None):
                curr_node = curr_node.getLeft()
        return curr_node

    def empty(self):
        if self.root is None:
            return True
        return False

    def __InOrderTraversal(self, curr_node):
        nodeList = []
        if curr_node is not None:
            nodeList.insert(0, curr_node)
            nodeList = nodeList + self.__InOrderTraversal(curr_node.getLeft())
            nodeList = nodeList + self.__InOrderTraversal(curr_node.getRight())
        return nodeList

    def getRoot(self):
        return self.root

    def __isRightChildren(self, node):
        if(node == node.getParent().getRight()):
            return True
        return False

    def __reassignNodes(self, node, newChildren):
        if(newChildren is not None):
            newChildren.setParent(node.getParent())
        if(node.getParent() is not None):
            #If it is the Right Children
            if(self.__isRightChildren(node)):
                node.getParent().setRight(newChildren)
            else:
                #Else it is the left children
                node.getParent().setLeft(newChildren)

    #This function traversal the tree. By default it returns an
    #In order traversal list. You can pass a function to traversal
    #The tree as needed by client code
    def traversalTree(self, traversalFunction = None, root = None):
        if(traversalFunction is None):
            #Returns a list of nodes in preOrder by default
            return self.__InOrderTraversal(self.root)
        else:
            #Returns a list of nodes in the order that the users wants to
            return traversalFunction(self.root)

    #Returns an string of all the nodes labels in the list 
    #In Order Traversal
    def __str__(self):
        list = self.__InOrderTraversal(self.root)
        str = ""
        for x in list:
            str = str + " " + x.getLabel().__str__()
        return str

def InPreOrder(curr_node):
    nodeList = []
    if curr_node is not None:
        nodeList = nodeList + InPreOrder(curr_node.getLeft())
        nodeList.insert(0, curr_node.getLabel())
        nodeList = nodeList + InPreOrder(curr_node.getRight())
    return nodeList

def testBinarySearchTree():
    r'''
    Example
                  8
                 / \
                3   10
               / \    \
              1   6    14
                 / \   /
                4   7 13 
    '''

    r'''
    Example After Deletion
                  7
                 / \
                1   4

    '''
    t = BinarySearchTree()
    t.insert(8)
    t.insert(3)
    t.insert(6)
    t.insert(1)
    t.insert(10)
    t.insert(14)
    t.insert(13)
    t.insert(4)
    t.insert(7)

    #Prints all the elements of the list in order traversal
    print(t.__str__())

    if(t.getNode(6) is not None):
        print("The label 6 exists")
    else:
        print("The label 6 doesn't exist")

    if(t.getNode(-1) is not None):
        print("The label -1 exists")
    else:
        print("The label -1 doesn't exist")

    if(not t.empty()):
        print(("Max Value: ", t.getMax().getLabel()))
        print(("Min Value: ", t.getMin().getLabel()))

    t.delete(13)
    t.delete(10)
    t.delete(8)
    t.delete(3)
    t.delete(6)
    t.delete(14)

    #Gets all the elements of the tree In pre order
    #And it prints them
    list = t.traversalTree(InPreOrder, t.root)
    for x in list:
        print(x)

if __name__ == "__main__":
    testBinarySearchTree()

0

Je veux montrer une variante de la méthode de @ apadana, qui est plus utile lorsqu'il y a un nombre considérable de nœuds:

'''
Suppose we have the following tree
      10
    /    \
  11      9
 /  \     / \
7   12  15   8
'''
# Step 1 - Create nodes - Use a list instead of defining each node separately
nlist = [10,11,7,9,15,8,12]; n = []
for i in range(len(nlist)): n.append(Node(nlist[i]))

# Step 2 - Set each node position
n[0].left  = n[1]
n[1].left = n[2]
n[0].right = n[3]
n[3].left = n[4]
n[3].right = n[5]
n[1].right = n[6]

0
class Node:
    """
    single Node for tree
    """

    def __init__(self, data):
        self.data = data
        self.right = None
        self.left = None


class binaryTree:
    """
    binary tree implementation
    """

    def __init__(self):
        self.root = None

    def push(self, element, node=None):
        if node is None:
            node = self.root

        if self.root is None:
            self.root = Node(element)

        else:
            if element < node.data:
                if node.left is not None:
                    self.push(element, node.left)
                else:
                    node.left = Node(element)
            else:
                if node.right is not None:
                    self.push(element, node.right)
                else:
                    node.right = Node(element)

    def __str__(self):
        self.printInorder(self.root)
        return "\n"

    def printInorder(self, node):
        """
        print tree in inorder
        """
        if node is not None:
            self.printInorder(node.left)
            print(node.data)
            self.printInorder(node.right)


def main():
    """
    Main code and logic comes here
    """
    tree = binaryTree()
    tree.push(5)
    tree.push(3)
    tree.push(1)
    tree.push(3)
    tree.push(0)
    tree.push(2)
    tree.push(9)
    tree.push(10)
    print(tree)


if __name__ == "__main__":
    main()

-1

Arbre binaire en Python

 class Tree(object):
    def __init__(self):
        self.data=None
        self.left=None
        self.right=None
    def insert(self, x, root):
        if root==None:
            t=node(x)
            t.data=x
            t.right=None
            t.left=None
            root=t
            return root
        elif x<root.data:
            root.left=self.insert(x, root.left)
        else:
            root.right=self.insert(x, root.right)
        return root

    def printTree(self, t):
        if t==None:
            return

        self.printTree(t.left)
        print t.data
        self.printTree(t.right)

class node(object):
    def __init__(self, x):
        self.x=x

bt=Tree()
root=None
n=int(raw_input())
a=[]
for i in range(n):
    a.append(int(raw_input()))
for i in range(n):
    root=bt.insert(a[i], root)
bt.printTree(root)

-1

Voici une solution simple qui peut être utilisée pour construire un arbre binaire en utilisant une approche récursive pour afficher l'arbre dans l'ordre que la traversée a été utilisée dans le code ci-dessous.

class Node(object):

    def __init__(self):
        self.left = None
        self.right = None
        self.value = None
    @property
    def get_value(self):
        return self.value

    @property
    def get_left(self):
        return self.left

    @property
    def get_right(self):
        return self.right

    @get_left.setter
    def set_left(self, left_node):
        self.left = left_node
    @get_value.setter
    def set_value(self, value):
        self.value = value
    @get_right.setter
    def set_right(self, right_node):
        self.right = right_node



    def create_tree(self):
        _node = Node() #creating new node.
        _x = input("Enter the node data(-1 for null)")
        if(_x == str(-1)): #for defining no child.
            return None
        _node.set_value = _x #setting the value of the node.
        print("Enter the left child of {}".format(_x))
        _node.set_left = self.create_tree() #setting the left subtree
        print("Enter the right child of {}".format(_x))
        _node.set_right = self.create_tree() #setting the right subtree.

        return _node

    def pre_order(self, root):
        if root is not None:
            print(root.get_value)
            self.pre_order(root.get_left)
            self.pre_order(root.get_right)

if __name__ == '__main__':
    node = Node()
    root_node = node.create_tree()
    node.pre_order(root_node)

Code extrait de: Arbre binaire en Python

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.