En ce qui concerne les fonctions de binning, je ne m'attendais pas au résultat des fonctions proposées jusqu'à présent. À savoir, si ma largeur de bin est de 0,001, ces fonctions centraient les cases sur 0,0005 points, alors que je pense qu'il est plus intuitif d'avoir les cases centrées sur les limites de 0,001.
En d'autres termes, j'aimerais avoir
Bin 0.001 contain data from 0.0005 to 0.0014
Bin 0.002 contain data from 0.0015 to 0.0024
...
La fonction de binning que j'ai trouvée est
my_bin(x,width) = width*(floor(x/width+0.5))
Voici un script pour comparer certaines des fonctions bin offertes à celle-ci:
rint(x) = (x-int(x)>0.9999)?int(x)+1:int(x)
bin(x,width) = width*rint(x/width) + width/2.0
binc(x,width) = width*(int(x/width)+0.5)
mitar_bin(x,width) = width*floor(x/width) + width/2.0
my_bin(x,width) = width*(floor(x/width+0.5))
binwidth = 0.001
data_list = "-0.1386 -0.1383 -0.1375 -0.0015 -0.0005 0.0005 0.0015 0.1375 0.1383 0.1386"
my_line = sprintf("%7s %7s %7s %7s %7s","data","bin()","binc()","mitar()","my_bin()")
print my_line
do for [i in data_list] {
iN = i + 0
my_line = sprintf("%+.4f %+.4f %+.4f %+.4f %+.4f",iN,bin(iN,binwidth),binc(iN,binwidth),mitar_bin(iN,binwidth),my_bin(iN,binwidth))
print my_line
}
et voici la sortie
data bin() binc() mitar() my_bin()
-0.1386 -0.1375 -0.1375 -0.1385 -0.1390
-0.1383 -0.1375 -0.1375 -0.1385 -0.1380
-0.1375 -0.1365 -0.1365 -0.1375 -0.1380
-0.0015 -0.0005 -0.0005 -0.0015 -0.0010
-0.0005 +0.0005 +0.0005 -0.0005 +0.0000
+0.0005 +0.0005 +0.0005 +0.0005 +0.0010
+0.0015 +0.0015 +0.0015 +0.0015 +0.0020
+0.1375 +0.1375 +0.1375 +0.1375 +0.1380
+0.1383 +0.1385 +0.1385 +0.1385 +0.1380
+0.1386 +0.1385 +0.1385 +0.1385 +0.1390