Héritage régulier
Avec l'héritage d'héritage non virtuel non diamant à 3 niveaux, lorsque vous instanciez un nouvel objet le plus dérivé, new est appelé et la taille requise pour l'objet est résolue à partir du type de classe par le compilateur et passée à new.
nouveau a une signature:
_GLIBCXX_WEAK_DEFINITION void *
operator new (std::size_t sz) _GLIBCXX_THROW (std::bad_alloc)
Et fait un appel à malloc
, renvoyant le pointeur vide
Il est ensuite transmis au constructeur de l'objet le plus dérivé, qui appellera immédiatement le constructeur du milieu, puis le constructeur du milieu appellera immédiatement le constructeur de base. La base stocke ensuite un pointeur sur sa table virtuelle au début de l'objet, puis ses attributs après celui-ci. Cela revient ensuite au constructeur du milieu qui stockera son pointeur de table virtuelle au même emplacement, puis ses attributs après les attributs qui auraient été stockés par le constructeur de base. Il retourne au constructeur le plus dérivé, qui stocke un pointeur sur sa table virtuelle au même emplacement, puis ses attributs après les attributs qui auraient été stockés par le constructeur du milieu.
Parce que le pointeur de table virtuelle est remplacé, le pointeur de table virtuelle finit toujours par être la classe la plus dérivée. La virtualité se propage vers la classe la plus dérivée, donc si une fonction est virtuelle dans la classe moyenne, elle sera virtuelle dans la classe la plus dérivée mais pas dans la classe de base. Si vous transformez de manière polymorphe une instance de la classe la plus dérivée en un pointeur vers la classe de base, le compilateur ne résoudra pas cela en un appel indirect à la table virtuelle et appellera à la place la fonction directement A::function()
. Si une fonction est virtuelle pour le type auquel vous l'avez convertie, elle se résoudra en appel dans la table virtuelle qui sera toujours celle de la classe la plus dérivée. S'il n'est pas virtuel pour ce type, il ne fera qu'appeler Type::function()
et lui passer le pointeur d'objet, transtypé en Type.
En fait, quand je dis pointeur sur sa table virtuelle, c'est en fait toujours un décalage de 16 dans la table virtuelle.
vtable for Base:
.quad 0
.quad typeinfo for Base
.quad Base::CommonFunction()
.quad Base::VirtualFunction()
pointer is typically to the first function i.e.
mov edx, OFFSET FLAT:vtable for Base+16
virtual
n'est plus requis dans les classes plus dérivées s'il est virtuel dans une classe moins dérivée car il se propage. Mais il peut être utilisé pour montrer que la fonction est bien une fonction virtuelle, sans avoir à vérifier les classes dont elle hérite des définitions de type.
override
est un autre garde du compilateur qui dit que cette fonction est en train de remplacer quelque chose et si ce n'est pas le cas, alors lancez une erreur du compilateur.
= 0
signifie qu'il s'agit d'une fonction abstraite
final
empêche une fonction virtuelle d'être implémentée à nouveau dans une classe plus dérivée et s'assurera que la table virtuelle de la classe la plus dérivée contient la fonction finale de cette classe.
= default
rend explicite dans la documentation que le compilateur utilisera l'implémentation par défaut
= delete
donner une erreur de compilation si un appel à ceci est tenté
Héritage virtuel
Considérer
class Base
{
int a = 1;
int b = 2;
public:
void virtual CommonFunction(){} ;
void virtual VirtualFunction(){} ;
};
class DerivedClass1: virtual public Base
{
int c = 3;
public:
void virtual DerivedCommonFunction(){} ;
void virtual VirtualFunction(){} ;
};
class DerivedClass2 : virtual public Base
{
int d = 4;
public:
//void virtual DerivedCommonFunction(){} ;
void virtual VirtualFunction(){} ;
void virtual DerivedCommonFunction2(){} ;
};
class DerivedDerivedClass : public DerivedClass1, public DerivedClass2
{
int e = 5;
public:
void virtual DerivedDerivedCommonFunction(){} ;
void virtual VirtualFunction(){} ;
};
int main () {
DerivedDerivedClass* d = new DerivedDerivedClass;
d->VirtualFunction();
d->DerivedCommonFunction();
d->DerivedCommonFunction2();
d->DerivedDerivedCommonFunction();
((DerivedClass2*)d)->DerivedCommonFunction2();
((Base*)d)->VirtualFunction();
}
Sans hériter virtuellement de la classe de basse, vous obtiendrez un objet qui ressemble à ceci:
Au lieu de cela:
C'est-à-dire qu'il y aura 2 objets de base.
Dans la situation de l' héritage de diamant virtuel ci - dessus, après nouvelle est appelée, elle appelle le constructeur le plus dérivé et dans ce constructeur, il appelle tous les trois constructeurs dérivés passant des décalages dans sa table de table virtuelle, au lieu d'appeler simplement appeler DerivedClass1::DerivedClass1()
et DerivedClass2::DerivedClass2()
puis les deux appelsBase::Base()
Ce qui suit est compilé en mode de débogage -O0 donc il y aura un assemblage redondant
main:
.LFB8:
push rbp
mov rbp, rsp
push rbx
sub rsp, 24
mov edi, 48 //pass size to new
call operator new(unsigned long) //call new
mov rbx, rax //move the address of the allocation to rbx
mov rdi, rbx //move it to rdi i.e. pass to the call
call DerivedDerivedClass::DerivedDerivedClass() [complete object constructor] //construct on this address
mov QWORD PTR [rbp-24], rbx //store the address of the object on the stack as d
DerivedDerivedClass::DerivedDerivedClass() [complete object constructor]:
.LFB20:
push rbp
mov rbp, rsp
sub rsp, 16
mov QWORD PTR [rbp-8], rdi
.LBB5:
mov rax, QWORD PTR [rbp-8] // object address now in rax
add rax, 32 //increment address by 32
mov rdi, rax // move object address+32 to rdi i.e. pass to call
call Base::Base() [base object constructor]
mov rax, QWORD PTR [rbp-8] //move object address to rax
mov edx, OFFSET FLAT:VTT for DerivedDerivedClass+8 //move address of VTT+8 to edx
mov rsi, rdx //pass VTT+8 address as 2nd parameter
mov rdi, rax //object address as first
call DerivedClass1::DerivedClass1() [base object constructor]
mov rax, QWORD PTR [rbp-8] //move object address to rax
add rax, 16 //increment object address by 16
mov edx, OFFSET FLAT:VTT for DerivedDerivedClass+24 //store address of VTT+24 in edx
mov rsi, rdx //pass address of VTT+24 as second parameter
mov rdi, rax //address of object as first
call DerivedClass2::DerivedClass2() [base object constructor]
mov edx, OFFSET FLAT:vtable for DerivedDerivedClass+24 //move this to edx
mov rax, QWORD PTR [rbp-8] // object address now in rax
mov QWORD PTR [rax], rdx. //store address of vtable for DerivedDerivedClass+24 at the start of the object
mov rax, QWORD PTR [rbp-8] // object address now in rax
add rax, 32 // increment object address by 32
mov edx, OFFSET FLAT:vtable for DerivedDerivedClass+120 //move this to edx
mov QWORD PTR [rax], rdx //store vtable for DerivedDerivedClass+120 at object+32 (Base)
mov edx, OFFSET FLAT:vtable for DerivedDerivedClass+72 //store this in edx
mov rax, QWORD PTR [rbp-8] //move object address to rax
mov QWORD PTR [rax+16], rdx //store vtable for DerivedDerivedClass+72 at object+16 (DerivedClass2)
mov rax, QWORD PTR [rbp-8]
mov DWORD PTR [rax+28], 5
.LBE5:
nop
leave
ret
Il appelle Base::Base()
avec un pointeur sur le décalage d'objet 32. Base stocke un pointeur sur sa table virtuelle à l'adresse qu'il reçoit et ses membres après celle-ci.
Base::Base() [base object constructor]:
.LFB11:
push rbp
mov rbp, rsp
mov QWORD PTR [rbp-8], rdi //stores address of object on stack (-O0)
.LBB2:
mov edx, OFFSET FLAT:vtable for Base+16 //puts vtable for Base+16 in edx
mov rax, QWORD PTR [rbp-8] //copies address of object from stack to rax
mov QWORD PTR [rax], rdx //stores it address of object
mov rax, QWORD PTR [rbp-8] //copies address of object on stack to rax again
mov DWORD PTR [rax+8], 1 //stores a = 1 in the object
mov rax, QWORD PTR [rbp-8] //junk from -O0
mov DWORD PTR [rax+12], 2 //stores b = 2 in the object
.LBE2:
nop
pop rbp
ret
DerivedDerivedClass::DerivedDerivedClass()
appelle ensuite DerivedClass1::DerivedClass1()
avec un pointeur sur le décalage d'objet 0 et passe également l'adresse deVTT for DerivedDerivedClass+8
DerivedClass1::DerivedClass1() [base object constructor]:
.LFB14:
push rbp
mov rbp, rsp
mov QWORD PTR [rbp-8], rdi //address of object
mov QWORD PTR [rbp-16], rsi //address of VTT+8
.LBB3:
mov rax, QWORD PTR [rbp-16] //address of VTT+8 now in rax
mov rdx, QWORD PTR [rax] //address of DerivedClass1-in-DerivedDerivedClass+24 now in rdx
mov rax, QWORD PTR [rbp-8] //address of object now in rax
mov QWORD PTR [rax], rdx //store address of DerivedClass1-in-.. in the object
mov rax, QWORD PTR [rbp-8] // address of object now in rax
mov rax, QWORD PTR [rax] //address of DerivedClass1-in.. now implicitly in rax
sub rax, 24 //address of DerivedClass1-in-DerivedDerivedClass+0 now in rax
mov rax, QWORD PTR [rax] //value of 32 now in rax
mov rdx, rax // now in rdx
mov rax, QWORD PTR [rbp-8] //address of object now in rax
add rdx, rax //address of object+32 now in rdx
mov rax, QWORD PTR [rbp-16] //address of VTT+8 now in rax
mov rax, QWORD PTR [rax+8] //address of DerivedClass1-in-DerivedDerivedClass+72 (Base::CommonFunction()) now in rax
mov QWORD PTR [rdx], rax //store at address object+32 (offset to Base)
mov rax, QWORD PTR [rbp-8] //store address of object in rax, return
mov DWORD PTR [rax+8], 3 //store its attribute c = 3 in the object
.LBE3:
nop
pop rbp
ret
VTT for DerivedDerivedClass:
.quad vtable for DerivedDerivedClass+24
.quad construction vtable for DerivedClass1-in-DerivedDerivedClass+24
.quad construction vtable for DerivedClass1-in-DerivedDerivedClass+72
.quad construction vtable for DerivedClass2-in-DerivedDerivedClass+24
.quad construction vtable for DerivedClass2-in-DerivedDerivedClass+72
.quad vtable for DerivedDerivedClass+120
.quad vtable for DerivedDerivedClass+72
construction vtable for DerivedClass1-in-DerivedDerivedClass:
.quad 32
.quad 0
.quad typeinfo for DerivedClass1
.quad DerivedClass1::DerivedCommonFunction()
.quad DerivedClass1::VirtualFunction()
.quad -32
.quad 0
.quad -32
.quad typeinfo for DerivedClass1
.quad Base::CommonFunction()
.quad virtual thunk to DerivedClass1::VirtualFunction()
construction vtable for DerivedClass2-in-DerivedDerivedClass:
.quad 16
.quad 0
.quad typeinfo for DerivedClass2
.quad DerivedClass2::VirtualFunction()
.quad DerivedClass2::DerivedCommonFunction2()
.quad -16
.quad 0
.quad -16
.quad typeinfo for DerivedClass2
.quad Base::CommonFunction()
.quad virtual thunk to DerivedClass2::VirtualFunction()
vtable for DerivedDerivedClass:
.quad 32
.quad 0
.quad typeinfo for DerivedDerivedClass
.quad DerivedClass1::DerivedCommonFunction()
.quad DerivedDerivedClass::VirtualFunction()
.quad DerivedDerivedClass::DerivedDerivedCommonFunction()
.quad 16
.quad -16
.quad typeinfo for DerivedDerivedClass
.quad non-virtual thunk to DerivedDerivedClass::VirtualFunction()
.quad DerivedClass2::DerivedCommonFunction2()
.quad -32
.quad 0
.quad -32
.quad typeinfo for DerivedDerivedClass
.quad Base::CommonFunction()
.quad virtual thunk to DerivedDerivedClass::VirtualFunction()
virtual thunk to DerivedClass1::VirtualFunction():
mov r10, QWORD PTR [rdi]
add rdi, QWORD PTR [r10-32]
jmp .LTHUNK0
virtual thunk to DerivedClass2::VirtualFunction():
mov r10, QWORD PTR [rdi]
add rdi, QWORD PTR [r10-32]
jmp .LTHUNK1
virtual thunk to DerivedDerivedClass::VirtualFunction():
mov r10, QWORD PTR [rdi]
add rdi, QWORD PTR [r10-32]
jmp .LTHUNK2
non-virtual thunk to DerivedDerivedClass::VirtualFunction():
sub rdi, 16
jmp .LTHUNK3
.set .LTHUNK0,DerivedClass1::VirtualFunction()
.set .LTHUNK1,DerivedClass2::VirtualFunction()
.set .LTHUNK2,DerivedDerivedClass::VirtualFunction()
.set .LTHUNK3,DerivedDerivedClass::VirtualFunction()
DerivedDerivedClass::DerivedDerivedClass()
passe ensuite l'adresse de l'objet + 16 et l'adresse de VTT pour DerivedDerivedClass+24
à DerivedClass2::DerivedClass2()
qui l'assemblage est identique à l' DerivedClass1::DerivedClass1()
exception de la ligne mov DWORD PTR [rax+8], 3
qui a évidemment un 4 au lieu de 3 pour d = 4
.
Après cela, il remplace les 3 pointeurs de table virtuelle de l'objet par des pointeurs vers les décalages dans DerivedDerivedClass
la table de la représentation de cette classe.
d->VirtualFunction();
:
mov rax, QWORD PTR [rbp-24] //store pointer to virtual table in rax
mov rax, QWORD PTR [rax] //dereference and store in rax
add rax, 8 // call the 2nd function in the table
mov rdx, QWORD PTR [rax] //dereference
mov rax, QWORD PTR [rbp-24]
mov rdi, rax
call rdx
d->DerivedCommonFunction();
:
mov rax, QWORD PTR [rbp-24]
mov rdx, QWORD PTR [rbp-24]
mov rdx, QWORD PTR [rdx]
mov rdx, QWORD PTR [rdx]
mov rdi, rax
call rdx
d->DerivedCommonFunction2();
:
mov rax, QWORD PTR [rbp-24]
lea rdx, [rax+16]
mov rax, QWORD PTR [rbp-24]
mov rax, QWORD PTR [rax+16]
add rax, 8
mov rax, QWORD PTR [rax]
mov rdi, rdx
call rax
d->DerivedDerivedCommonFunction();
:
mov rax, QWORD PTR [rbp-24]
mov rax, QWORD PTR [rax]
add rax, 16
mov rdx, QWORD PTR [rax]
mov rax, QWORD PTR [rbp-24]
mov rdi, rax
call rdx
((DerivedClass2*)d)->DerivedCommonFunction2();
:
cmp QWORD PTR [rbp-24], 0
je .L14
mov rax, QWORD PTR [rbp-24]
add rax, 16
jmp .L15
.L14:
mov eax, 0
.L15:
cmp QWORD PTR [rbp-24], 0
cmp QWORD PTR [rbp-24], 0
je .L18
mov rdx, QWORD PTR [rbp-24]
add rdx, 16
jmp .L19
.L18:
mov edx, 0
.L19:
mov rdx, QWORD PTR [rdx]
add rdx, 8
mov rdx, QWORD PTR [rdx]
mov rdi, rax
call rdx
((Base*)d)->VirtualFunction();
:
cmp QWORD PTR [rbp-24], 0
je .L20
mov rax, QWORD PTR [rbp-24]
mov rax, QWORD PTR [rax]
sub rax, 24
mov rax, QWORD PTR [rax]
mov rdx, rax
mov rax, QWORD PTR [rbp-24]
add rax, rdx
jmp .L21
.L20:
mov eax, 0
.L21:
cmp QWORD PTR [rbp-24], 0
cmp QWORD PTR [rbp-24], 0
je .L24
mov rdx, QWORD PTR [rbp-24]
mov rdx, QWORD PTR [rdx]
sub rdx, 24
mov rdx, QWORD PTR [rdx]
mov rcx, rdx
mov rdx, QWORD PTR [rbp-24]
add rdx, rcx
jmp .L25
.L24:
mov edx, 0
.L25:
mov rdx, QWORD PTR [rdx]
add rdx, 8
mov rdx, QWORD PTR [rdx]
mov rdi, rax
call rdx