pour la distribution de fréquence d'une variable avec des valeurs excessives, vous pouvez réduire les valeurs dans les classes,
Ici, j'ai des valeurs excessives pour la employrate
variable, et il n'y a aucune signification de sa distribution de fréquence avec directvalues_count(normalize=True)
country employrate alcconsumption
0 Afghanistan 55.700001 .03
1 Albania 11.000000 7.29
2 Algeria 11.000000 .69
3 Andorra nan 10.17
4 Angola 75.699997 5.57
.. ... ... ...
208 Vietnam 71.000000 3.91
209 West Bank and Gaza 32.000000
210 Yemen, Rep. 39.000000 .2
211 Zambia 61.000000 3.56
212 Zimbabwe 66.800003 4.96
[213 rows x 3 columns]
distribution de fréquence values_count(normalize=True)
sans classification, la longueur du résultat ici est de 139 (semble dénuée de sens en tant que distribution de fréquence):
print(gm["employrate"].value_counts(sort=False,normalize=True))
50.500000 0.005618
61.500000 0.016854
46.000000 0.011236
64.500000 0.005618
63.500000 0.005618
58.599998 0.005618
63.799999 0.011236
63.200001 0.005618
65.599998 0.005618
68.300003 0.005618
Name: employrate, Length: 139, dtype: float64
en mettant la classification, nous mettons toutes les valeurs avec une certaine plage ie.
0-10 comme 1,
11-20 comme 2
21-30 comme 3, et ainsi de suite.
gm["employrate"]=gm["employrate"].str.strip().dropna()
gm["employrate"]=pd.to_numeric(gm["employrate"])
gm['employrate'] = np.where(
(gm['employrate'] <=10) & (gm['employrate'] > 0) , 1, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=20) & (gm['employrate'] > 10) , 1, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=30) & (gm['employrate'] > 20) , 2, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=40) & (gm['employrate'] > 30) , 3, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=50) & (gm['employrate'] > 40) , 4, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=60) & (gm['employrate'] > 50) , 5, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=70) & (gm['employrate'] > 60) , 6, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=80) & (gm['employrate'] > 70) , 7, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=90) & (gm['employrate'] > 80) , 8, gm['employrate']
)
gm['employrate'] = np.where(
(gm['employrate'] <=100) & (gm['employrate'] > 90) , 9, gm['employrate']
)
print(gm["employrate"].value_counts(sort=False,normalize=True))
après classification, nous avons une distribution de fréquence claire. ici on voit facilement que 37.64%
des pays ont un taux d'emploi entre 51-60%
et 11.79%
des pays ont un taux d'emploi entre71-80%
5.000000 0.376404
7.000000 0.117978
4.000000 0.179775
6.000000 0.264045
8.000000 0.033708
3.000000 0.028090
Name: employrate, dtype: float64
.value_counts().sort_index(1)
, pour éviter que la première colonne ne devienne légèrement en