Dans la plupart des circuits électriques avec relais, une diode est connectée en parallèle à la bobine du relais. Pourquoi? Est-ce toujours une bonne pratique?
Dans la plupart des circuits électriques avec relais, une diode est connectée en parallèle à la bobine du relais. Pourquoi? Est-ce toujours une bonne pratique?
Réponses:
Puisqu'une inductance (la bobine de relais) ne peut pas changer son courant instantanément, la diode à retour rapide fournit un chemin pour le courant lorsque la bobine est éteinte. Sinon, un pic de tension se produira, provoquant un arc électrique sur les contacts du commutateur ou éventuellement la destruction des transistors de commutation.
Est-ce toujours une bonne pratique?
Habituellement, mais pas toujours. Si la bobine de relais est alimentée en courant alternatif, une diode TVS bidirectionnelle (ou une autre pince de tension) et / ou un amortisseur (série RC) doit être utilisé. Une diode ne fonctionnerait pas dans ce cas car elle agirait comme un court-circuit pendant le demi-cycle négatif du courant alternatif. (Voir aussi Red Lion SNUB0000 pour plus d'informations sur l'application)
Pour les relais alimentés en courant continu, une diode est généralement utilisée, mais pas toujours. Comme Andy aka l'a fait remarquer, une tension plus élevée que celle autorisée par une diode seule est parfois souhaitée pour désactiver plus rapidement le relais (ou d'autres, telles que les solénoïdes, les transformateurs de retour, etc.). Dans ce cas, une diode TVS unidirectionnelle est parfois ajoutée en série avec la diode à retour rapide, connectée anode à anode (ou cathode à cathode). Une résistance en série pourrait être utilisée à la place de la diode TVS, mais la tension de blocage est plus déterministe si la diode TVS est utilisée.
Si un MOSFET est utilisé comme élément de commutation, vous avez normalement besoin de la diode de retour, car la diode du corps est dans la direction opposée pour que le résultat soit positif. Une exception à ceci est un MOSFET qui est "Répétitif contre les avalanches" (tel que IRFD220 ). Ceci est normalement dessiné avec un symbole de diode Zener pour la diode du corps. Ces MOSFET sont conçus pour bloquer la tension à un niveau auquel ils peuvent résister, permettant ainsi une tension plus élevée pour une désactivation plus rapide de la bobine. Parfois, une diode TVS unidirectionnelle externe (ou zener) est placée en parallèle avec le MOSFET dans le même but, ou si le MOSFET ne peut pas gérer le "courant d'avalanche répétitif" ou "l'énergie d'avalanche répétitive", ou si la tension de rupture en avalanche est plus élevé que souhaité.
Est-ce toujours une bonne pratique?
C'est presque toujours une bonne pratique et c'est très efficace MAIS, si vous avez besoin d'un relais qui se désactive aussi rapidement que possible, il existe des méthodes alternatives. La raison de sa lenteur est que, lorsque le circuit de la bobine de relais s'ouvre, toute l'énergie stockée dans la bobine de relais force un courant dans la diode du volant jusqu'à ce que cette énergie soit "dépensée".
La diode agit comme un court-circuit avec une petite chute de tension directe et avec la résistance du relais (peut-être 100 ohms), elle retardera la désactivation du relais de quelques millisecondes supplémentaires. Ce n'est généralement pas un problème, mais si c'est le cas, le fait de mettre une résistance en série avec la diode signifie que l'énergie est "dépensée" beaucoup plus rapidement.
L’inconvénient est que votre transistor de contrôle doit "subir" une impulsion de tension nettement supérieure à Vsupply + 0,7V - elle peut représenter le double de la tension d’alimentation lorsqu’une résistance est utilisée, mais dans la plupart des circuits, la recherche d’un transistor classé n'est généralement pas un problème.
Lorsque le courant traversant une bobine est coupé, la bobine (qui est un inducteur) essaiera de maintenir le courant. Lorsqu'il n'y a pas de chemin pour ce courant, la tension à travers la bobine augmentera rapidement et le courant trouvera un chemin, tout au long de l'isolement d'une puce ou d'un transistor, détruisant ce composant. La diode fournit un chemin pour ce courant, de sorte que l’énergie stockée dans la bobine puisse être dissipée en toute sécurité.
Alors oui, c’est une bonne idée de fournir un chemin de décharge.
Une diode parallèle à la bobine est probablement la méthode la plus souvent utilisée, mais il existe d'autres méthodes, comme un amortisseur (R + C) ou une diode Zener à la masse. Une résistance en série avec la diode peut accélérer la chute du relais.
Lorsqu'un relais électromécanique est rapidement mis hors tension par un commutateur mécanique ou un semi-conducteur, le champ magnétique collapsant produit une tension transitoire importante dans le but de disperser l'énergie stockée et de s'opposer au changement soudain du flux de courant. Un relais 12 V CC, par exemple, peut générer une tension de 1 000 à 1 500 volts lors de la mise hors tension. C'est donc une pratique courante de supprimer les bobines de relais avec des composants qui limitent la tension de crête à un niveau beaucoup plus petit en fournissant un chemin de décharge pour l'énergie magnétique stockée.
L'utilisation d'une diode à roue libre n'est pas toujours la meilleure pratique. Voici quelques méthodes de suppression:
La technique suggérée pour la suppression de bobine de relais consiste à utiliser une diode de redressement polarisée en inverse et une diode zener en série en parallèle avec la bobine. Cela permet au relais d'avoir une dynamique de libération optimale et une bonne durée de vie.
Chaque fois que le courant circule dans une bobine de fil, un pic de tension est créé. Cette pointe résulte de l'effondrement du champ magnétique autour de la bobine. Le mouvement du champ à travers la bobine produit une pointe de tension pouvant endommager les composants électroniques. C'est à ce moment que la diode de serrage entre en jeu. En installant la diode C en parallèle avec la bobine, une dérivation est créée pour les électrons pendant que le circuit est ouvert ou que le courant s’arrête à travers la bobine.