Trouver la quantité à partir de l'élasticité des prix


2

J'ai $ P_1 = 24 $, $ Q_1 = 800000 $, $ P_2 = 32 $ et l'élasticité des prix $ e = -8 $ et j'ai besoin de trouver la fonction $ P (Q) $.

Je suppose que je dois trouver $ Q_2 $ par

$$ \ frac {(Q_2-Q_1) / Q_1} {- (P_2-P_1) / P_1} = -8 \ Leftrightarrow Q_2 = \ frac {8800000} {3} $$

Mais est-il logique que la quantité soit beaucoup plus élevée d'un incrément de prix et ne respecte donc pas la loi de la demande? Je sais que $ e = -8 $ est une élasticité de prix élevée, mais je pense que c'est assez extrême.


Vous avez probablement une erreur dans votre équation. Il est difficile d’être sûr de ne pas voir le contexte dans votre manuel (il pourrait s’agir d’un exemple destiné à illustrer le concept des produits Giffen). Mais si ce n’est pas le cas, le côté gauche devrait être $ [(Q_2-Q_1) / Q_1] / [(P_2-P_1) / P_1] $ (c’est-à-dire sans signe négatif).
Ubiquitous

Mais sans le signe négatif, je reçois $ Q_2 = -4000000 / 3 $. Ne serait-ce pas un mauvais exemple si la quantité devient négative?
Jamgreen

Oui, et je remarque maintenant que vous avez dit que l'exemple concernait le marché de la pomme de terre, qui est l'exemple classique d'un produit Giffen. Je vous conseillerais de vous renseigner sur ces produits (si vous ne l'avez pas déjà fait) pour comprendre pourquoi les prix et les quantités évoluent dans le même sens.
Ubiquitous

Réponses:


0

Le bon n'est pas un bon giffen . Ces biens ont une élasticité positive de la demande. Le vôtre a un négatif, par hypothèse. Il ne peut pas donner un bon giffen du tout.

L'erreur est dans le signe négatif que vous (et aussi la réponse de Thomas) assumé.

La formule pour l'élasticité est:

$$ e_d = \ frac {\ Delta Q} {\ Delta P} \ frac {P} {Q} $$

La négativité de l'élasticité est donnée par le signe du dérivé (une augmentation de prix entraîne une baisse de la quantité demandée, au contraire d’un bien Giffen)

Dans votre exemple, en prenant comme point de départ $ Q_1 $ et $ P_1 $ (vous pouvez également utiliser le point final, ou l’élasticité de l’arc; voir ici ), vous recevez:

$$ -8 = \ frac {Q_2 - 800 000} {12} \ frac {24} {800 000} $$

Quels rendements

$$ Q_2 = -2 400 000 $$

C'est en effet une quantité négative. Pour voir pourquoi c'est le cas, réécrivez la fonction d'élasticité comme suit:

$$ e_d \ frac {\ Delta P} {P_1} = \ frac {\ Delta Q} {Q_1} $$

C'est le pourcentage le changement de la quantité est équivalent à la pourcentage changement des prix multiplié par l'élasticité.

En remplaçant les chiffres, vous obtenez:

$$ -4 = \ frac {\ Delta Q} {Q_1} $$

C'est, la quantité diminue de 400%! . C'est pourquoi cela devient négatif (de 800 000 à -2 400 000).

Le problème est à l'origine de la variation massive du prix (50%) et de l'élasticité massive de la demande (-8), qui donne la variation totale en quantité (50 $ \% \ fois -8 = -400 \% $). Une combinaison moins spectaculaire donnerait un résultat positif Q_2 $.


0

Vous avez cette élasticité de prix est définie par:

$$ \ varepsilon_ {d} = - \ frac {\ partielle Q} {\ partielle P} \ frac {P} {Q} \ approx - \ frac {P} {Q} \ frac {\ Delta Q} {\ Delta P} $$

Au départ, nous avons $ P = P_ {1} $ et $ Q = Q_ {1} $ et après la perturbation nous avons $ \ Delta P = (P_ {2} - P_ {1}) $ et $ \ Delta Q = ( Q_ {2} - Q_ {1}) $, donc:

$$ - \ frac {P_ {1}} {Q_ {1}} \ frac {Q_ {2} -Q_ {1}} {P_ {2} -P_ {1}} = - 8 \ implique Q_ {2} -Q_ {1} = \ frac {8Q_ {1} (P_ {2} -P_ {1})} {P_ {1}} $$

Et donc:

$$ Q_ {2} = Q_ {1} + \ frac {8Q_ {1} (P_ {2} -P_ {1})} {P_ {1}} = \ frac {8800000} {3} $$

Cela est si important, en partie à cause de l’élasticité des prix, mais aussi probablement à cause de l’erreur de la méthode d’approximation par différence finie lors de variations aussi importantes de $ P $.


Je vous remercie. Mais est-il logique que la quantité augmente même lorsque le prix augmente? Mon problème de manuel concerne les pommes de terre.
Jamgreen

@Jamgreen Eh bien, dans le cas des pommes de terre, cela ne semble pas avoir de sens; bien que $ \ varepsilon_ {d} & lt; 0 $ cela a du sens mathématiquement. Votre manuel donne-t-il la formule de $ \ varepsilon_ {d} $, la définit-il parfois sans le coefficient négatif? Habituellement, ce genre de comportement se produit avec Giffen goods .
Thomas Russell
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.