J'étais curieux à ce sujet et j'ai fait quelques tests.
J'ai formé un modèle sur l'ensemble de données sur les diamants et j'ai observé que la variable «x» est la plus importante pour prédire si le prix d'un diamant est supérieur à un certain seuil. Ensuite, j'ai ajouté plusieurs colonnes hautement corrélées à x, exécuté le même modèle et observé les mêmes valeurs.
Il semble que lorsque la corrélation entre deux colonnes est 1, xgboost supprime la colonne supplémentaire avant de calculer le modèle, de sorte que l'importance n'est pas affectée. Cependant, lorsque vous ajoutez une colonne partiellement corrélée à une autre, donc avec un coefficient inférieur, l'importance de la variable d'origine x est réduite.
Par exemple, si j'ajoute une variable xy = x + y, l'importance de x et y diminue. De même, l'importance de x diminue si j'ajoute de nouvelles variables avec r = 0,4, 0,5 ou 0,6, bien que juste un peu.
Je pense que la colinéarité n'est pas un problème pour booster lorsque vous calculez la précision du modèle, car l'arbre de décision ne se soucie pas de laquelle des variables est utilisée. Cependant, cela pourrait affecter l'importance des variables, car la suppression de l'une des deux variables corrélées n'a pas un grand impact sur la précision du modèle, étant donné que l'autre contient des informations similaires.
library(tidyverse)
library(xgboost)
evaluate_model = function(dataset) {
print("Correlation matrix")
dataset %>% select(-cut, -color, -clarity, -price) %>% cor %>% print
print("running model")
diamond.model = xgboost(
data=dataset %>% select(-cut, -color, -clarity, -price) %>% as.matrix,
label=dataset$price > 400,
max.depth=15, nrounds=30, nthread=2, objective = "binary:logistic",
verbose=F
)
print("Importance matrix")
importance_matrix <- xgb.importance(model = diamond.model)
importance_matrix %>% print
xgb.plot.importance(importance_matrix)
}
> diamonds %>% head
carat cut color clarity depth table price x y z
0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
Évaluer un modèle sur les données diamants
Nous prédisons si le prix est supérieur à 400, compte tenu de toutes les variables numériques disponibles (carat, profondeur, tableau, x, y, x)
Notez que x est la variable la plus importante, avec un score de gain d'importance de 0,375954.
evaluate_model(diamonds)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.37595419 0.54788335 0.19607102
2: carat 0.19699839 0.18015576 0.04873442
3: depth 0.15358261 0.08780079 0.27767284
4: y 0.11645929 0.06527969 0.18813751
5: table 0.09447853 0.05037063 0.17151492
6: z 0.06252699 0.06850978 0.11786929
Modèle formé sur les diamants, ajoutant une variable avec r = 1 à x
Ici, nous ajoutons une nouvelle colonne, qui n'ajoute cependant aucune nouvelle information, car elle est parfaitement corrélée à x.
Notez que cette nouvelle variable n'est pas présente dans la sortie. Il semble que xgboost supprime automatiquement les variables parfaitement corrélées avant de commencer le calcul. Le gain d'importance de x est le même, 0,3759.
diamonds_xx = diamonds %>%
mutate(xx = x + runif(1, -1, 1))
evaluate_model(diamonds_xx)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
xx 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
xx
carat 0.97509423
depth -0.02528925
table 0.19534428
x 1.00000000
y 0.97470148
z 0.97077180
xx 1.00000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.37595419 0.54788335 0.19607102
2: carat 0.19699839 0.18015576 0.04873442
3: depth 0.15358261 0.08780079 0.27767284
4: y 0.11645929 0.06527969 0.18813751
5: table 0.09447853 0.05037063 0.17151492
6: z 0.06252699 0.06850978 0.11786929
Modèle formé sur les diamants, ajoutant une colonne pour x + y
Nous ajoutons une nouvelle colonne xy = x + y. Ceci est partiellement corrélé à la fois à x et à y.
Notez que l'importance de x et y est légèrement réduite, passant de 0,3759 à 0,3592 pour x, et de 0,116 à 0,079 pour y.
diamonds_xy = diamonds %>%
mutate(xy=x+y)
evaluate_model(diamonds_xy)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.02822431 0.1816175 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.00000000 -0.2957785 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.29577852 1.0000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.02528925 0.1953443 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.02934067 0.1837601 0.97470148 1.00000000 0.95200572
z 0.95338738 0.09492388 0.1509287 0.97077180 0.95200572 1.00000000
xy 0.96945349 -0.02750770 0.1907100 0.99354016 0.99376929 0.96744200
xy
carat 0.9694535
depth -0.0275077
table 0.1907100
x 0.9935402
y 0.9937693
z 0.9674420
xy 1.0000000
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.35927767 0.52924339 0.15952849
2: carat 0.17881931 0.18472506 0.04793713
3: depth 0.14353540 0.07482622 0.24990177
4: table 0.09202059 0.04714548 0.16267191
5: xy 0.08203819 0.04706267 0.13555992
6: y 0.07956856 0.05284980 0.13595285
7: z 0.06474029 0.06414738 0.10844794
Modèle formé sur les données Diamonds, modifié en ajoutant des colonnes redondantes
Nous ajoutons trois nouvelles colonnes qui sont corrélées à x (r = 0,4, 0,5 et 0,6) et voyons ce qui se passe.
Notez que l'importance de x diminue, passant de 0,3759 à 0,279.
#' given a vector of values (e.g. diamonds$x), calculate three new vectors correlated to it
#'
#' Source: https://stat.ethz.ch/pipermail/r-help/2007-April/128938.html
calculate_correlated_vars = function(x1) {
# create the initial x variable
#x1 <- diamonds$x
# x2, x3, and x4 in a matrix, these will be modified to meet the criteria
x234 <- scale(matrix( rnorm(nrow(diamonds) * 3), ncol=3 ))
# put all into 1 matrix for simplicity
x1234 <- cbind(scale(x1),x234)
# find the current correlation matrix
c1 <- var(x1234)
# cholesky decomposition to get independence
chol1 <- solve(chol(c1))
newx <- x1234 %*% chol1
# check that we have independence and x1 unchanged
zapsmall(cor(newx))
all.equal( x1234[,1], newx[,1] )
# create new correlation structure (zeros can be replaced with other r vals)
newc <- matrix(
c(1 , 0.4, 0.5, 0.6,
0.4, 1 , 0 , 0 ,
0.5, 0 , 1 , 0 ,
0.6, 0 , 0 , 1 ), ncol=4 )
# check that it is positive definite
eigen(newc)
chol2 <- chol(newc)
finalx <- newx %*% chol2 * sd(x1) + mean(x1)
# verify success
mean(x1)
colMeans(finalx)
sd(x1)
apply(finalx, 2, sd)
zapsmall(cor(finalx))
#pairs(finalx)
all.equal(x1, finalx[,1])
finalx
}
finalx = calculate_correlated_vars(diamonds$x)
diamonds_cor = diamonds
diamonds_cor$x5 = finalx[,2]
diamonds_cor$x6 = finalx[,3]
diamonds_cor$x7 = finalx[,4]
evaluate_model(diamonds_cor)
[1] "Correlation matrix"
carat depth table x y z
carat 1.00000000 0.028224314 0.18161755 0.97509423 0.95172220 0.95338738
depth 0.02822431 1.000000000 -0.29577852 -0.02528925 -0.02934067 0.09492388
table 0.18161755 -0.295778522 1.00000000 0.19534428 0.18376015 0.15092869
x 0.97509423 -0.025289247 0.19534428 1.00000000 0.97470148 0.97077180
y 0.95172220 -0.029340671 0.18376015 0.97470148 1.00000000 0.95200572
z 0.95338738 0.094923882 0.15092869 0.97077180 0.95200572 1.00000000
x5 0.39031255 -0.007507604 0.07338484 0.40000000 0.38959178 0.38734145
x6 0.48879000 -0.016481580 0.09931705 0.50000000 0.48835896 0.48487442
x7 0.58412252 -0.013772440 0.11822089 0.60000000 0.58408881 0.58297414
x5 x6 x7
carat 3.903125e-01 4.887900e-01 5.841225e-01
depth -7.507604e-03 -1.648158e-02 -1.377244e-02
table 7.338484e-02 9.931705e-02 1.182209e-01
x 4.000000e-01 5.000000e-01 6.000000e-01
y 3.895918e-01 4.883590e-01 5.840888e-01
z 3.873415e-01 4.848744e-01 5.829741e-01
x5 1.000000e+00 5.925447e-17 8.529781e-17
x6 5.925447e-17 1.000000e+00 6.683397e-17
x7 8.529781e-17 6.683397e-17 1.000000e+00
[1] "running model"
[1] "Importance matrix"
Feature Gain Cover Frequency
1: x 0.27947762 0.51343709 0.09748172
2: carat 0.13556427 0.17401365 0.02680747
3: x5 0.13369515 0.05267688 0.18155971
4: x6 0.12968400 0.04804315 0.19821284
5: x7 0.10600238 0.05148826 0.16450041
6: depth 0.07087679 0.04485760 0.11251015
7: y 0.06050565 0.03896716 0.08245329
8: table 0.04577057 0.03135677 0.07554833
9: z 0.03842355 0.04515944 0.06092608