Itérations de Bailey – Borwein – Plouffe


16

Itérations de Bailey – Borwein – Plouffe

Nous avons vu quelques défis pi sur PPCG, mais aucun qui dicte spécifiquement l'algorithme que vous devez utiliser. J'aimerais voir des implémentations de l' algorithme Bailey – Borwein – Plouffe dans n'importe quel langage jusqu'à l'itération n. La formule est la suivante:

Formule modifiée.

Votre algorithme doit sortir chaque itération jusqu'à n, en montrant les sommes intermédiaires ainsi que le résultat final pour former un "piangle". Vous pouvez également utiliser la forme polynomiale réduite de l'algorithme présenté sur la page wikipedia. Un exemple d'exécution pour n=50est illustré ci-dessous:

3
3.1
3.14
3.141
3.1415
3.14159
3.141592
3.1415926
3.14159265
3.141592653
3.1415926535
3.14159265358
3.141592653589
3.1415926535897
3.14159265358979
3.141592653589793
3.1415926535897932
3.14159265358979323
3.141592653589793238
3.1415926535897932384
3.14159265358979323846
3.141592653589793238462
3.1415926535897932384626
3.14159265358979323846264
3.141592653589793238462643
3.1415926535897932384626433
3.14159265358979323846264338
3.141592653589793238462643383
3.1415926535897932384626433832
3.14159265358979323846264338327
3.141592653589793238462643383279
3.1415926535897932384626433832795
3.14159265358979323846264338327950
3.141592653589793238462643383279502
3.1415926535897932384626433832795028
3.14159265358979323846264338327950288
3.141592653589793238462643383279502884
3.1415926535897932384626433832795028841
3.14159265358979323846264338327950288419
3.141592653589793238462643383279502884197
3.1415926535897932384626433832795028841971
3.14159265358979323846264338327950288419716
3.141592653589793238462643383279502884197169
3.1415926535897932384626433832795028841971693
3.14159265358979323846264338327950288419716939
3.141592653589793238462643383279502884197169399
3.1415926535897932384626433832795028841971693993
3.14159265358979323846264338327950288419716939937
3.141592653589793238462643383279502884197169399375
3.1415926535897932384626433832795028841971693993751
3.14159265358979323846264338327950288419716939937510

La précision de chaque itération doit être égale à la n qui est passée à l'algorithme, c'est-à-dire que chaque itération doit calculer pi jusqu'au passé npour tous k.

Règles:

  • Les fonctions intégrées ne sont pas autorisées, ni pi vous ne devez pas non plus utiliser la formule.
  • Vous devez soutenir n jusqu'à un maximum que votre langue permet en termes de calcul 16^n. Si l'entrée provoque un dépassement arithmétique pendant le calcul après les x<nexécutions parce que votre langue ne prend en charge que les décimales jusqu'à 2^32-1, cela ne pose aucun problème . Toutes les autres hypothèses sur nne sont pas correctes.
  • Vous DEVEZ fournir une explication de la façon dont vous avez obtenu la sortie si ce n'est pas évident. Par exemple, si vous publiez dans une langue de golf, une ventilation est requise à 100%. C'est pour vous assurer que vous utilisez l'algorithme spécifié.
  • Les trous de boucle standard ne sont pas autorisés.
  • Il s'agit du code-golf, le nombre d'octets le plus bas gagne ici.

Code de référence (code utilisé pour générer l'exemple):

public static void main(String[] args) {
    (0..50).each {
        n->
        def x=(0..n).collect {
            j->
            def k=new BigDecimal(j)
            def s={it.setScale(n)}
            def a=s(1.0g).divide(s(16.0g)**s(k))
            def b=s(4.0g)/(s(8.0g)*s(k)+s(1.0g))
            def c=s(2.0g)/(s(8.0g)*s(k)+s(4.0g))
            def d=s(1.0g)/(s(8.0g)*s(k)+s(5.0g))
            def e=s(1.0g)/(s(8.0g)*s(k)+s(6.0g))
            def f=a*(b-c-d-e)
        }.sum()
        println(n + "\t" + x.setScale(n, BigDecimal.ROUND_DOWN))
    }
}

Cette mise en œuvre plafonne à n=255, vous pouvez plafonner à moins ou plus.
Cette implémentation a été effectuée dans Groovy.


5
Le seul inconvénient que je vois est qu'il sera difficile de vérifier exactement quelle méthode quelqu'un utilise uniquement en fonction de la sortie, ce qui est généralement un problème avec les Calculate foo via x methoddéfis.
DJMcMayhem

@DJMcMayhem Ajout d'une explication du code que vous publiez étant requis si ce n'est pas une implémentation évidente, pour nous assurer que nous pouvons réellement dire ce qu'ils ont fait. L'algorithme est en fait assez simple, donc il ne devrait pas être trop mauvais.
Urne de poulpe magique

2
En ce qui concerne le commentaire de @ DJMcMayhem, consultez les conseils pour éviter les exigences de programme non observables .
Peter Taylor

2
Vous devez prendre en charge n jusqu'à un maximum autorisé par votre langue. Permet comment? Puis-je utiliser la récursivité? Puis-je utiliser des listes si les générateurs seraient plus conviviaux en mémoire? Puis-je utiliser 2n chiffres et couper le dernier n?
Dennis

1
Dans un souci de clarté, je supprimerais simplement les ordinaux avant cette sortie qui est réellement requise.
Dennis

Réponses:


8

05AB1E , 63 52 50 octets

Formule de spécialisation

΃0NU62201122vy͹̰*8X*N>+÷+}16Xm÷+DX>£X__iÀ'.ìÁ},

Essayez-le en ligne!

Formule BBP

ƒ4¹>°UX*8N*©>÷YX*®4+÷-1X*®5+÷-1X*®6+÷-1X*16Nm÷*ODN>£N__iÀ'.ìÁ},

Essayez-le en ligne!


1
"Votre algorithme devrait sortir chaque itération jusqu'à n, en montrant les sommes intermédiaires ainsi que le résultat final pour former un" piangle "."
Urne de poulpe magique

1
@carusocomputing: Peut-être changer le libellé sur la sortie du n de l'itération actuelle est facultatif car j'ai compris que seul le résultat final est nécessaire.
Emigna

Ou peut-être que c'est juste moi qui suis mauvais en lecture (je sais que j'ai tendance à sauter des parties quand je sens que j'ai l'essentiel)
Emigna

4
Peut-être juste nous , mais certainement pas seulement vous .
Dennis

@carusocomputing: ajout d'itérations. Besoin de trouver un moyen moins cher de le faire comme le "." était très cher.
Emigna

5

Python 2, 109 108 octets

def f(n):k=1;s=0;t=100**n;exec-~n*'s+=4*t/k-2*t/(k+3)-t/(k+4)-t/(k+5)>>k/2;print"3."[:k]+`s`[1:k/8+1];k+=8;'

Testez-le sur Ideone .


3

Python 2, 174 octets

Man, c'est un moment où je souhaite que Python ait un moyen plus facile de garder une précision infinie pour les décimales. La formule est écrite textuellement.

from decimal import*
n=input();d=Decimal;getcontext().prec=n+2;p=d(0)
for i in range(n+1):f=8.*i;p+=d(16**(-i))*(4/d(f+1)-2/d(f+4)-1/d(f+5)-1/d(f+6));print str(p)[:-~i+(i>0)]

Exemple de sortie pour n=100(avec quelques numéros de ligne ajoutés):

3
3.1
3.14
3.141
3.1415
3.14159
3.141592
3.1415926
3.14159265
3.141592653
3.1415926535
3.14159265358
3.141592653589
3.1415926535897
3.14159265358979
3.141592653589793
3.1415926535897932
3.14159265358979323
3.141592653589793238
3.1415926535897932384
3.14159265358979323846
3.141592653589793238462
3.1415926535897932384626
3.14159265358979323846264
3.141592653589793238462643
3.1415926535897932384626433
3.14159265358979323846264338
3.141592653589793238462643383
3.1415926535897932384626433832
3.14159265358979323846264338327
3.141592653589793238462643383279
3.1415926535897932384626433832795
3.14159265358979323846264338327950
3.141592653589793238462643383279502
3.1415926535897932384626433832795028
3.14159265358979323846264338327950288
3.141592653589793238462643383279502884
3.1415926535897932384626433832795028841
3.14159265358979323846264338327950288419
3.141592653589793238462643383279502884197
3.1415926535897932384626433832795028841971
3.14159265358979323846264338327950288419716
3.141592653589793238462643383279502884197169
3.1415926535897932384626433832795028841971693
3.14159265358979323846264338327950288419716939
3.141592653589793238462643383279502884197169399
3.1415926535897932384626433832795028841971693993
3.14159265358979323846264338327950288419716939937
3.141592653589793238462643383279502884197169399375
3.1415926535897932384626433832795028841971693993751
3.14159265358979323846264338327950288419716939937510
3.141592653589793238462643383279502884197169399375105
3.1415926535897932384626433832795028841971693993751058
3.14159265358979323846264338327950288419716939937510582
3.141592653589793238462643383279502884197169399375105820
3.1415926535897932384626433832795028841971693993751058209
3.14159265358979323846264338327950288419716939937510582097
3.141592653589793238462643383279502884197169399375105820974
3.1415926535897932384626433832795028841971693993751058209749
3.14159265358979323846264338327950288419716939937510582097494
3.141592653589793238462643383279502884197169399375105820974944
3.1415926535897932384626433832795028841971693993751058209749445
3.14159265358979323846264338327950288419716939937510582097494459
3.141592653589793238462643383279502884197169399375105820974944592
3.1415926535897932384626433832795028841971693993751058209749445923
3.14159265358979323846264338327950288419716939937510582097494459230
3.141592653589793238462643383279502884197169399375105820974944592307
3.1415926535897932384626433832795028841971693993751058209749445923078
3.14159265358979323846264338327950288419716939937510582097494459230781
3.141592653589793238462643383279502884197169399375105820974944592307816
3.1415926535897932384626433832795028841971693993751058209749445923078164
3.14159265358979323846264338327950288419716939937510582097494459230781640
3.141592653589793238462643383279502884197169399375105820974944592307816406
3.1415926535897932384626433832795028841971693993751058209749445923078164062
3.14159265358979323846264338327950288419716939937510582097494459230781640628
3.141592653589793238462643383279502884197169399375105820974944592307816406286
3.1415926535897932384626433832795028841971693993751058209749445923078164062862
3.14159265358979323846264338327950288419716939937510582097494459230781640628620
3.141592653589793238462643383279502884197169399375105820974944592307816406286208
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

Cela semble fonctionner pour un plus grand nombre, n=1000 s'exécute en quelques secondes et n=10000ne semble pas encore m'avoir donné d'erreurs!


3

Haskell, 101100 octets

Merci à @nimi pour un octet.

f n=take(n+2).show$sum[1/16^k*(4/(l+1)-2/(l+4)-1/(l+5)-1/(l+6))|k<-[0..100+n],l<-[8*fromIntegral k]]

Mise en œuvre simple. Calcule njusqu'à 15 chiffres (double précision standard).


l<-[8*fromIntegral k]au lieu de l' let ...enregistre un octet.
nimi

3

J, 73 64 62 octets

(j.":"+10&^(<.@*%[)[:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8)@i.@>:

Cela renvoie chaque approximation à n chiffres sous forme de chaîne formatée. Cela utilise la simplification polynomiale de la formule et obtient le premier n chiffres en multipliant la somme par une puissance de 10, en l'étalant et en divisant par cette même puissance de 10.

L'entrée est considérée comme un entier étendu, ce qui signifie que les rationnels sont utilisés lorsque la division se produit, ce qui maintient les résultats exacts.

Usage

Il s'agit de la sortie pour n = 100, montrant les sommes cumulées pour k dans [0, 100].

   f =: (j.":"+10&^(<.@*%[)[:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8)@i.@>:
   f 100x
3                                                                                                     
3.1                                                                                                   
3.14                                                                                                  
3.141                                                                                                 
3.1415                                                                                                
3.14159                                                                                               
3.141592                                                                                              
3.1415926                                                                                             
3.14159265                                                                                            
3.141592653                                                                                           
3.1415926535                                                                                          
3.14159265358                                                                                         
3.141592653589                                                                                        
3.1415926535897                                                                                       
3.14159265358979                                                                                      
3.141592653589793                                                                                     
3.1415926535897932                                                                                    
3.14159265358979323                                                                                   
3.141592653589793238                                                                                  
3.1415926535897932384                                                                                 
3.14159265358979323846                                                                                
3.141592653589793238462                                                                               
3.1415926535897932384626                                                                              
3.14159265358979323846264                                                                             
3.141592653589793238462643                                                                            
3.1415926535897932384626433                                                                           
3.14159265358979323846264338                                                                          
3.141592653589793238462643383                                                                         
3.1415926535897932384626433832                                                                        
3.14159265358979323846264338327                                                                       
3.141592653589793238462643383279                                                                      
3.1415926535897932384626433832795                                                                     
3.14159265358979323846264338327950                                                                    
3.141592653589793238462643383279502                                                                   
3.1415926535897932384626433832795028                                                                  
3.14159265358979323846264338327950288                                                                 
3.141592653589793238462643383279502884                                                                
3.1415926535897932384626433832795028841                                                               
3.14159265358979323846264338327950288419                                                              
3.141592653589793238462643383279502884197                                                             
3.1415926535897932384626433832795028841971                                                            
3.14159265358979323846264338327950288419716                                                           
3.141592653589793238462643383279502884197169                                                          
3.1415926535897932384626433832795028841971693                                                         
3.14159265358979323846264338327950288419716939                                                        
3.141592653589793238462643383279502884197169399                                                       
3.1415926535897932384626433832795028841971693993                                                      
3.14159265358979323846264338327950288419716939937                                                     
3.141592653589793238462643383279502884197169399375                                                    
3.1415926535897932384626433832795028841971693993751                                                   
3.14159265358979323846264338327950288419716939937510                                                  
3.141592653589793238462643383279502884197169399375105                                                 
3.1415926535897932384626433832795028841971693993751058                                                
3.14159265358979323846264338327950288419716939937510582                                               
3.141592653589793238462643383279502884197169399375105820                                              
3.1415926535897932384626433832795028841971693993751058209                                             
3.14159265358979323846264338327950288419716939937510582097                                            
3.141592653589793238462643383279502884197169399375105820974                                           
3.1415926535897932384626433832795028841971693993751058209749                                          
3.14159265358979323846264338327950288419716939937510582097494                                         
3.141592653589793238462643383279502884197169399375105820974944                                        
3.1415926535897932384626433832795028841971693993751058209749445                                       
3.14159265358979323846264338327950288419716939937510582097494459                                      
3.141592653589793238462643383279502884197169399375105820974944592                                     
3.1415926535897932384626433832795028841971693993751058209749445923                                    
3.14159265358979323846264338327950288419716939937510582097494459230                                   
3.141592653589793238462643383279502884197169399375105820974944592307                                  
3.1415926535897932384626433832795028841971693993751058209749445923078                                 
3.14159265358979323846264338327950288419716939937510582097494459230781                                
3.141592653589793238462643383279502884197169399375105820974944592307816                               
3.1415926535897932384626433832795028841971693993751058209749445923078164                              
3.14159265358979323846264338327950288419716939937510582097494459230781640                             
3.141592653589793238462643383279502884197169399375105820974944592307816406                            
3.1415926535897932384626433832795028841971693993751058209749445923078164062                           
3.14159265358979323846264338327950288419716939937510582097494459230781640628                          
3.141592653589793238462643383279502884197169399375105820974944592307816406286                         
3.1415926535897932384626433832795028841971693993751058209749445923078164062862                        
3.14159265358979323846264338327950288419716939937510582097494459230781640628620                       
3.141592653589793238462643383279502884197169399375105820974944592307816406286208                      
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089                     
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899                    
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998                   
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986                  
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862                 
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628                
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280               
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803              
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034             
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348            
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482           
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825          
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253         
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534        
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342       
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421      
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211     
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117    
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170   
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211706  
3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342117067 
3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679

Explication

Faites d'abord la plage [0, n ], indiquée pour n = 5

   i. >: 5
0 1 2 3 4 5

Multipliez chacun par 8

   (*&8) i. >: 5
0 8 16 24 32 40

Former le tableau d'addition entre [1, 4, 5, 6]et les produits avec 8

   (1 4 5 6+/*&8) i. >: 5
1  9 17 25 33 41
4 12 20 28 36 44
5 13 21 29 37 45
6 14 22 30 38 46

Divisez chaque ligne par [4, 2, -1, 1]

   (4 2 _1 1%1 4 5 6+/*&8) i. >: 5
       4   0.444444  0.235294       0.16  0.121212   0.097561
     0.5   0.166667       0.1  0.0714286 0.0555556  0.0454545
    _0.2 _0.0769231 _0.047619 _0.0344828 _0.027027 _0.0222222
0.166667  0.0714286 0.0454545  0.0333333 0.0263158  0.0217391

Ensuite, réduisez les colonnes de bas en haut en utilisant la soustraction

   ([:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3.13333 0.129426 0.0422205 0.0207553 0.0123137 0.00814508

Divisez chaque 16 k pour k en [0, n ] par chaque résultat

   (16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3.13333 0.00808913 0.000164924 5.06722e_6 1.87893e_7 7.76775e_9

Trouver les sommes cumulées

   ([:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3.13333 3.14142 3.14159 3.14159 3.14159 3.14159

Calculez 10 k pour k dans [0, n ] et multipliez-le avec chacun

   (10&^(*)[:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3.13333 31.4142 314.159 3141.59 31415.9 314159

Ensuite, étage chacun des produits

   (10&^(<.@*)[:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3 31 314 3141 31415 314159

Divisez-le par la même puissance de 10 pour obtenir les résultats

   (10&^(<.@*%[)[:+/\16&^%~[:-/4 2 _1 1%1 4 5 6+/*&8) i. >: 5
3 3.1 3.14 3.141 3.1415 3.14159

Nicee! Heureux que quelqu'un ait utilisé la simplification polynomiale.
Urne de poulpe magique

@carusocomputing Malheureusement, je viens de le raccourcir en utilisant les coefficients en construisant une table de valeurs pour additionner les colonnes
miles

Pourtant, bien fait sur les deux implémentations.
Urne de poulpe magique

3

PARI / GP, 86 octets

n->for(k=p=0,n,printf("%."k"f\n",(p=16*p-4/(3-j=8*k+4)-2/j-1/j++-1/j++)\(8/5)^k/10^k))

Ou sans le point décimal en 69 octets :

n->for(k=p=0,n,print((p=16*p-4/(3-j=8*k+4)-2/j-1/j++-1/j++)\(8/5)^k))

Plutôt que de diviser par 16 k à chaque itération, la valeur précédente de p est plutôt multipliée par 16 . Le plancher de p ÷ (8/5) k est alors la valeur de π tronquée au nombre correct de chiffres.

Exemple d'utilisation

$ gp
? n->for(k=p=0,n,printf("%."k"f\n",(p=16*p-4/(3-j=8*k+4)-2/j-1/j++-1/j++)\(8/5)^k/10^k))
? %(20)
3
3.1
3.14
3.141
3.1415
3.14159
3.141592
3.1415926
3.14159265
3.141592653
3.1415926535
3.14159265358
3.141592653589
3.1415926535897
3.14159265358979
3.141592653589793
3.1415926535897932
3.14159265358979323
3.141592653589793238
3.1415926535897932384
3.14159265358979323846

3

C GCC, 118 octets

Golfé:

main(){double k,a,s=1,t;k=a=0;while(k<15){t=k++*8;a+=(4/(t+1)-2/(t+4)-1/(t+5)-1/(t+6))/s;s*=16;printf("%.15lf\n",a);}}

Non golfé:

main(){
    double k,a,s=1,t;
    k=a=0;
    while(k<15){
        t=k++*8;
        a+=(4/(t+1)-2/(t+4)-1/(t+5)-1/(t+6))/s;
        s*=16;
        printf("%.15lf\n",a);
    }
}

Pour changer n, il suffit de changer while (k <15) en while (k <n)

production:

$ gcc pigolf.c -o pigolf
some gcc screaming warnings
$ ./pigolf 
3.133333333333333
3.141422466422466
3.141587390346582
3.141592457567436
3.141592645460336
3.141592653228088
3.141592653572881
3.141592653588973
3.141592653589752
3.141592653589791
3.141592653589793
3.141592653589793
3.141592653589793
3.141592653589793
3.141592653589793

la précision maximale est de 15 décimales, je pourrais augmenter à n'importe quelle valeur avec gmp, mais peut-être le lendemain pi: P

avec jolie impression, 143 octets

Golfé:

main(){double k,a,s=1,t;char o[19];k=a=0;while(k<15){t=k++*8;a+=(4/(t+1)-2/(t+4)-1/(t+5)-1/(t+6))/s;s*=16;snprintf(o,k+3,"%.15lf",a);puts(o);}}

Non golfé:

main(){
    double k,a,s=1,t;
    char o[19];
    k=a=0;
    while(k<15){
        t=k++*8;
        a+=(4/(t+1)-2/(t+4)-1/(t+5)-1/(t+6))/s;
        s*=16;
        snprintf(o,k+3,"%.15lf",a);
        puts(o);
    }
}

production:

$ gcc pigolf_pretty.c -o pigolf_pretty
more gcc screaming warnings
$ ./pigolf_pretty
3.1
3.14
3.141
3.1415
3.14159
3.141592
3.1415926
3.14159265
3.141592653
3.1415926535
3.14159265358
3.141592653589
3.1415926535897
3.14159265358979
3.141592653589793

1
Bienvenue sur le site! C'est une bonne première réponse :)
DJMcMayhem

Une parenthèse près du - ne serait pas nécessaire
RosLuP

Merci @RosLuP :)
llpinokio


@ceilingcat ++ t plusieurs fois dans une instruction serait pour C (et compilateur C) Comportement
indéfini

2

Formule IBM / Lotus Notes, 125 octets

p:=0;@For(n:=0;n<=a;n:=n+1;b:=8*n;p:=p+@Power(16;-n)*(4/(b+1)-2/(b+4)-1/(b+5)-1/(b+6));o:=o:@Left(@Text(p);n+@If(n=0;1;2)));o

Formule dans un champ calculé avec un autre champ appelé "a" pour la saisie.

Fondamentalement, un port de l'algorithme de la réponse Python de @shebang. Calcule jusqu'à 15 chiffres, après quoi il tronque en raison d'une limitation de la langue (voir sortie). J'ai dû gaspiller 12 octets avec la déclaration @If à la fin juste pour se débarrasser de la. après le 3 au départ: - /

Exemple de sortie

Non golfé

p:=0;
@For(n:=0; n<=a; n:=n+1;
 b:=8*n;
 p:=p+@Power(16;-n)*(4/(b+1)-2/(b+4)-1/(b+5)-1/(b+6));
 o:=o:@Left(@Text(p);n+@If(n=0;1;2))
 );
o

mais la formule Notes ne sera jamais une langue de golf. Merci à @Shebang pour l'inspiration.
ElPedro

0

C #, 183 octets

Golfé:

void F(int n){double s=0;for(int k=0;k<=n;k++){s+=1/Math.Pow(16,k)*(4.0/(8*k+1)-2.0/(8*k+4)-1.0/(8*k+5)-1.0/(8*k+6));double p=Math.Pow(10,k);Console.WriteLine(Math.Truncate(s*p)/p);}}

Non golfé:

void F(int n)
{
    double s = 0;

    for (int k = 0; k <= n; k++)
    {
        s += 1/Math.Pow(16, k)*(4.0/(8*k + 1) - 2.0/(8*k + 4) - 1.0/(8*k + 5) - 1.0/(8*k + 6));
        double p = Math.Pow(10, k);

        Console.WriteLine(Math.Truncate(s*p)/p);
    }
}

Est -ce pas l' impression 3.14159265358979de tout en n >= 14raison de la double précision?
Emigna

Oui, mais je n'ai aucune idée de solution de contournement.
paldir

Vous pouvez utiliser la bibliothèque BigInteger lors du calcul puis du formatage de la sortie sous forme de chaîne.
Emigna

0

APL (NARS), 206 caractères, 412 octets

fdn←{1∧÷⍵}⋄fnm←{1∧⍵}⋄r2fs←{q←⌈-/10x⍟¨(fdn ⍵),fnm ⍵⋄m←⎕ct⋄⎕ct←0⋄a←⌊⍵×10x*⍺⋄⎕ct←m⋄k←≢b←⍕a⋄0≥k-⍺:'0.',((⍺-k)⍴'0'),b⋄((k-⍺)↑b),'.',(k-⍺)↓b}⋄p←{+/¨{k←1+8×⍵⋄(+/4 2 1 1÷k,-k+3..5)÷16*⍵}¨¨{0..⍵}¨0..⍵}⋄q←{⍪⍵r2fs¨p⍵}

Cela permet de trouver toutes les approssimations en grand rationnel, puis d'utiliser une fonction qui convertit le grand rationnel en chaîne numérique ... test:

 q 1x
3.1 
3.1 
  q 2x
3.13 
3.14 
3.14 
  q 3x
3.133 
3.141 
3.141 
3.141 
  q 10x
3.1333333333 
3.1414224664 
3.1415873903 
3.1415924575 
3.1415926454 
3.1415926532 
3.1415926535 
3.1415926535 
3.1415926535 
3.1415926535 
3.1415926535 
  q 20x
3.13333333333333333333 
3.14142246642246642246 
3.14158739034658152305 
3.14159245756743538183 
3.14159264546033631955 
3.14159265322808753473 
3.14159265357288082778 
3.14159265358897270494 
3.14159265358975227523 
3.14159265358979114638 
3.14159265358979312961 
3.14159265358979323271 
3.14159265358979323815 
3.14159265358979323844 
3.14159265358979323846 
3.14159265358979323846 
3.14159265358979323846 
3.14159265358979323846 
3.14159265358979323846 
3.14159265358979323846 
3.14159265358979323846 
  q 57x     
3.133333333333333333333333333333333333333333333333333333333 
3.141422466422466422466422466422466422466422466422466422466 
3.141587390346581523052111287405405052463875993287757993640 
3.141592457567435381837004555057293394007389950594818748976 
3.141592645460336319557021222442381831727406617979907186696 
3.141592653228087534734378035536204469558528012197801934814 
3.141592653572880827785240761895898484239065603786606461624 
3.141592653588972704940777767170189446971120489811822860633 
3.141592653589752275236177868398102225795024633409061087027 
3.141592653589791146388776965910347414779015888488996772587 
3.141592653589793129614170564041344858816452676296281615895 
3.141592653589793232711292261930077163422606275435901151635 
3.141592653589793238154766322501863827762609260414389714560 
3.141592653589793238445977501940281666096938425156252904675 
3.141592653589793238461732482037982486800056278143046732780 
3.141592653589793238462593174670682882792683045699610435502 
3.141592653589793238462640595138128445061235672871301070791 
3.141592653589793238462643227424822458237094279625505676929 
3.141592653589793238462643374515761485970237552267559842751 
3.141592653589793238462643382784091514246623611329334708720 
3.141592653589793238462643383251362615881909316518417908555 
3.141592653589793238462643383277897474896408560218644955706 
3.141592653589793238462643383279410929692483875831459799593 
3.141592653589793238462643383279497597978087353533999465917 
3.141592653589793238462643383279502579284902684600486947911 
3.141592653589793238462643383279502866555094658758532859204 
3.141592653589793238462643383279502883173477103651067488504 
3.141592653589793238462643383279502884137610730938143080855 
3.141592653589793238462643383279502884193695667358321264063 
3.141592653589793238462643383279502884196966326705909950134 
3.141592653589793238462643383279502884197157502154596455091 
3.141592653589793238462643383279502884197168700950456888403 
3.141592653589793238462643383279502884197169358296080453391 
3.141592653589793238462643383279502884197169396954642664355 
3.141592653589793238462643383279502884197169399232246022950 
3.141592653589793238462643383279502884197169399366660542801 
3.141592653589793238462643383279502884197169399374605817825 
3.141592653589793238462643383279502884197169399375076175949 
3.141592653589793238462643383279502884197169399375104060947 
3.141592653589793238462643383279502884197169399375105716347 
3.141592653589793238462643383279502884197169399375105814747 
3.141592653589793238462643383279502884197169399375105820603 
3.141592653589793238462643383279502884197169399375105820952 
3.141592653589793238462643383279502884197169399375105820973 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
3.141592653589793238462643383279502884197169399375105820974 
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.