code machine x86 (IA-32), 126 octets
Hexdump:
60 8b f9 57 33 c0 f2 ae 5e 2b fe 4f 87 fa 8d 1c
12 8b c3 48 f6 e3 c6 04 07 00 48 c6 04 07 20 75
f9 8b ea 4d 53 8d 04 2a 50 53 8b c5 f6 e3 8d 44
68 01 50 53 2b c2 8b c8 50 4b 53 55 53 03 c5 50
f7 d3 53 50 53 95 f6 e2 6b c0 04 50 43 53 51 6a
01 4a 52 6a 01 50 6a ff 51 b0 0a 6a 0b 8b dc 59
8b 6c cb fc 88 04 2f 03 2c cb 89 6c cb fc 83 f9
0a 75 01 ac e2 ea 4a 79 e0 83 c4 58 61 c3
C'est un peu long, donc pour l'expliquer, je vais d'abord donner le code C:
void doit(const char* s, char out[])
{
int n = strlen(s);
int w = 2 * n;
int h = w - 1;
int m = n - 1;
memset(out, ' ', h * w);
out[h * w] = 0;
int offset1 = n + m;
int offset2 = w * m + 2 * m + 1; // 2 * n * n - 1
int offset3 = offset2 - n; // 2 * n * n - n - 1
int offset4 = 4 * n * m; // 4 * n * n - 4 * n
int offsets[] = {
offset3, -1,
offset4, 1,
m, 1,
offset3, 1 - w,
offset4, -w,
offset2 - 1, -w,
offset2 - 1, w - 1,
m, w - 1,
offset3, w,
offset2, w,
offset1, w,
};
do
{
char c = *s++;
for (int i = 0; i < 11; ++i)
{
if (i == 9)
c = '\n';
int offset = offsets[i * 2];
assert(offset > 0 && offset < w * h);
out[offset] = c;
offsets[i * 2] += offsets[i * 2 + 1];
}
} while (--n);
}
Ici n
la longueur de la chaîne d'entrée.
Les dimensions de la zone de sortie sont 2n
(largeur) par 2n-1
(hauteur). Tout d'abord, il remplit tout avec des espaces (et ajoute un octet nul final). Ensuite, il parcourt 11 lignes droites dans la zone de sortie et les remplit de texte:
- 2 lignes sont remplies d'octets de fin de ligne (= 10)
- 9 lignes sont remplies avec les octets consécutifs de la chaîne d'entrée
Chaque ligne est représentée par deux nombres, un décalage de départ et une foulée. Je les ai fourrés dans le tableauoffsets
, pour rendre l'accès "facile".
La partie intéressante remplit le tableau. Il y a peu d'importance pour l'ordre des entrées dans le tableau; J'ai essayé de les réorganiser pour minimiser le nombre de conflits de registres. De plus, les formules quadratiques ont une certaine liberté dans le choix du mode de calcul; J'ai essayé de minimiser le nombre de soustractions (car les ajouts peuvent être mis en œuvre par le flexibleLEA
instruction ).
Source d'assemblage:
pushad;
; // Calculate the length of the input string
mov edi, ecx;
push edi;
xor eax, eax;
repne scasb;
pop esi; // esi = input string
sub edi, esi;
dec edi;
; // Calculate the size of the output area
xchg edi, edx; // edx = n
// edi = output string
lea ebx, [edx + edx]; // ebx = w
mov eax, ebx;
dec eax; // eax = h
mul bl; // eax = w * h
; // Fill the output string with spaces and zero terminate it
mov byte ptr [edi + eax], 0;
myfill:
dec eax;
mov byte ptr [edi + eax], ' ';
jnz myfill;
mov ebp, edx;
dec ebp; // ebp = m
; // Fill the array of offsets
push ebx; // w
lea eax, [edx + ebp];
push eax; // offset1
push ebx; // w
mov eax, ebp;
mul bl;
lea eax, [eax + 2 * ebp + 1];
push eax; // offset2
push ebx; // w
sub eax, edx;
mov ecx, eax; // ecx = offset3
push eax; // offset3
dec ebx;
push ebx; // w - 1
push ebp; // m
push ebx; // w - 1
add eax, ebp;
push eax; // offset2 - 1
not ebx;
push ebx; // -w
push eax; // offset2 - 1
push ebx; // -w
xchg eax, ebp; // eax = m
mul dl;
imul eax, eax, 4;
push eax; // offset4
inc ebx;
push ebx; // 1 - w
push ecx; // offset3
push 1;
dec edx; // edx = n - 1
push edx;
push 1;
push eax;
push -1;
push ecx;
; // Use the array of offsets to write stuff to output
myout:
mov al, '\n';
push 11;
mov ebx, esp;
pop ecx;
myloop:
mov ebp, [ebx + ecx * 8 - 4];
mov [edi + ebp], al;
add ebp, [ebx + ecx * 8];
mov [ebx + ecx * 8 - 4], ebp;
cmp ecx, 10;
jne skip_read;
lodsb;
skip_read:
loop myloop;
dec edx;
jns myout;
add esp, 11 * 8;
popad;
ret;
J'ai utilisé des multiplications d'octets ici, limitant la longueur de la chaîne d'entrée à 127. Cela évite d'alourdir le registre edx
- le produit est calculé à la ax
place.
Un petit problème: lors du remplissage du tableau, la longueur de la chaîne est réduite de 1. J'ai donc ajusté la condition de sortie de la boucle:
jns myout
Il compte jusqu'à -1.