C ++ 11, 38272 lettres, optimales prouvées
Cet algorithme est garanti pour fournir une limite inférieure sur la solution. Dans ce cas, il est capable d'atteindre la limite inférieure et de produire une solution optimale de 38272 lettres. (Cela correspond à la solution trouvée par l'algorithme gourmand de Dave. J'ai été surpris et un peu déçu de découvrir que c'est optimal, mais nous y voilà.)
Il fonctionne en résolvant le problème de flux à coût minimum sur le réseau construit comme suit.
- Premièrement, tous les mots contenus dans d'autres mots sont redondants; jetez-les.
- Pour chaque mot w , dessinez deux nœuds w _0 et w _1, où w _0 est une source avec une capacité 1 et w _1 est un puits avec une capacité 1.
- Pour chaque préfixe ou suffixe (strict) a de n'importe quel mot, dessinez un nœud a .
- Pour chaque suffixe a de w , tracez un arc de w _0 à a de capacité 1 et coûte 0.
- Pour chaque préfixe a de w , tracez un arc de a à w _1 avec la capacité 1 et le coût longueur ( w ) - longueur ( a ).
Toute chaîne de longueur n qui contient chaque mot peut être convertie en un flux sur ce réseau avec un coût au plus n . Par conséquent, le flux de coûts minimum sur ce réseau est une limite inférieure sur la longueur de la chaîne la plus courte.
Si nous sommes chanceux - et dans ce cas, nous le sommes - alors après avoir redirigé le flux entrant dans w _1 de retour de w _0, nous trouverons un flux optimal qui n'a qu'un seul composant connecté et qui traverse le nœud pour le vide chaîne. Si c'est le cas, il contiendra un circuit eulérien commençant et se terminant là. Un tel circuit eulérien peut être lu comme une chaîne de longueur optimale.
Si nous n'avons pas eu de chance, ajoutez des arcs supplémentaires entre la chaîne vide et les chaînes les plus courtes des autres composants connectés afin de garantir l'existence d'un circuit eulérien. La chaîne ne serait plus nécessairement optimale dans ce cas.
J'utilise la bibliothèque LEMON pour ses algorithmes de flux à moindre coût et de circuit eulérien. (C'était la première fois que j'utilisais cette bibliothèque, et j'ai été impressionné — je vais certainement l'utiliser à nouveau pour les futurs besoins d'algorithmes de graphes.) LEMON est livré avec quatre algorithmes de flux à coût minimum différents; vous pouvez les essayer ici avec --net
, --cost
, --cap
et --cycle
(par défaut).
Le programme s'exécute en 0,5 seconde , produisant cette chaîne de sortie .
#include <iostream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <lemon/core.h>
#include <lemon/connectivity.h>
#include <lemon/euler.h>
#include <lemon/maps.h>
#include <lemon/list_graph.h>
#include <lemon/network_simplex.h>
#include <lemon/cost_scaling.h>
#include <lemon/capacity_scaling.h>
#include <lemon/cycle_canceling.h>
using namespace std;
typedef lemon::ListDigraph G;
struct Word {
G::Node suffix, prefix;
G::Node tour_node;
};
struct Edge {
unordered_map<string, Word>::iterator w;
G::Arc arc;
};
struct Affix {
vector<Edge> suffix, prefix;
G::Node node;
G::Node tour_node;
};
template<class MCF>
bool solve(const G &net, const G::ArcMap<int> &lowerMap, const G::ArcMap<int> &upperMap, const G::ArcMap<int> &costMap, const G::NodeMap<int> &supplyMap, int &totalCost, G::ArcMap<int> &flowMap)
{
MCF mcf(net);
if (mcf.lowerMap(lowerMap).upperMap(upperMap).costMap(costMap).supplyMap(supplyMap).run() != mcf.OPTIMAL)
return false;
totalCost = mcf.totalCost();
mcf.flowMap(flowMap);
return true;
}
int main(int argc, char **argv)
{
clog << "Reading dictionary from stdin" << endl;
unordered_map<string, Affix> affixes;
unordered_map<string, Word> words;
unordered_set<string> subwords;
G net, tour;
G::ArcMap<int> lowerMap(net), upperMap(net), costMap(net);
G::NodeMap<int> supplyMap(net);
string new_word;
while (getline(cin, new_word)) {
if (subwords.find(new_word) != subwords.end())
continue;
for (auto i = new_word.begin(); i != new_word.end(); ++i) {
for (auto j = new_word.end(); j != i; --j) {
string s(i, j);
words.erase(s);
subwords.insert(s);
}
}
words.emplace(new_word, Word());
}
for (auto w = words.begin(); w != words.end(); ++w) {
w->second.suffix = net.addNode();
supplyMap.set(w->second.suffix, 1);
w->second.prefix = net.addNode();
supplyMap.set(w->second.prefix, -1);
for (auto i = w->first.begin(); ; ++i) {
affixes.emplace(string(w->first.begin(), i), Affix()).first->second.prefix.push_back(Edge {w});
affixes.emplace(string(i, w->first.end()), Affix()).first->second.suffix.push_back(Edge {w});
if (i == w->first.end())
break;
}
w->second.tour_node = tour.addNode();
}
for (auto a = affixes.begin(); a != affixes.end();) {
if (a->second.suffix.empty() || a->second.prefix.empty() ||
(a->second.suffix.size() == 1 && a->second.prefix.size() == 1 &&
a->second.suffix.begin()->w == a->second.prefix.begin()->w)) {
affixes.erase(a++);
} else {
a->second.node = net.addNode();
supplyMap.set(a->second.node, 0);
for (auto &e : a->second.suffix) {
e.arc = net.addArc(e.w->second.suffix, a->second.node);
lowerMap.set(e.arc, 0);
upperMap.set(e.arc, 1);
costMap.set(e.arc, 0);
}
for (auto &e : a->second.prefix) {
e.arc = net.addArc(a->second.node, e.w->second.prefix);
lowerMap.set(e.arc, 0);
upperMap.set(e.arc, 1);
costMap.set(e.arc, e.w->first.length() - a->first.length());
}
a->second.tour_node = lemon::INVALID;
++a;
}
}
clog << "Read " << words.size() << " words and found " << affixes.size() << " affixes; ";
clog << "created network with " << countNodes(net) << " nodes and " << countArcs(net) << " arcs" << endl;
int totalCost;
G::ArcMap<int> flowMap(net);
bool solved;
if (argc > 1 && string(argv[1]) == "--net") {
clog << "Using network simplex algorithm" << endl;
solved = solve<lemon::NetworkSimplex<G>>(net, lowerMap, upperMap, costMap, supplyMap, totalCost, flowMap);
} else if (argc > 1 && string(argv[1]) == "--cost") {
clog << "Using cost scaling algorithm" << endl;
solved = solve<lemon::CostScaling<G>>(net, lowerMap, upperMap, costMap, supplyMap, totalCost, flowMap);
} else if (argc > 1 && string(argv[1]) == "--cap") {
clog << "Using capacity scaling algorithm" << endl;
solved = solve<lemon::CapacityScaling<G>>(net, lowerMap, upperMap, costMap, supplyMap, totalCost, flowMap);
} else if ((argc > 1 && string(argv[1]) == "--cycle") || true) {
clog << "Using cycle canceling algorithm" << endl;
solved = solve<lemon::CycleCanceling<G>>(net, lowerMap, upperMap, costMap, supplyMap, totalCost, flowMap);
}
if (!solved) {
clog << "error: no solution found" << endl;
return 1;
}
clog << "Lower bound: " << totalCost << endl;
G::ArcMap<string> arcLabel(tour);
G::Node empty = tour.addNode();
affixes.find("")->second.tour_node = empty;
for (auto &a : affixes) {
for (auto &e : a.second.suffix) {
if (flowMap[e.arc]) {
if (a.second.tour_node == lemon::INVALID)
a.second.tour_node = tour.addNode();
arcLabel.set(tour.addArc(e.w->second.tour_node, a.second.tour_node), "");
}
}
for (auto &e : a.second.prefix) {
if (flowMap[e.arc]) {
if (a.second.tour_node == lemon::INVALID)
a.second.tour_node = tour.addNode();
arcLabel.set(tour.addArc(a.second.tour_node, e.w->second.tour_node), e.w->first.substr(a.first.length()));
}
}
}
clog << "Created tour graph with " << countNodes(tour) << " nodes and " << countArcs(tour) << " arcs" << endl;
G::NodeMap<int> compMap(tour);
int components = lemon::stronglyConnectedComponents(tour, compMap);
if (components != 1) {
vector<unordered_map<string, Affix>::iterator> breaks(components, affixes.end());
for (auto a = affixes.begin(); a != affixes.end(); ++a) {
if (a->second.tour_node == lemon::INVALID)
continue;
int c = compMap[a->second.tour_node];
if (c == compMap[empty])
continue;
auto &b = breaks[compMap[a->second.tour_node]];
if (b == affixes.end() || b->first.length() > a->first.length())
b = a;
}
int offset = 0;
for (auto &b : breaks) {
if (b != affixes.end()) {
arcLabel.set(tour.addArc(empty, b->second.tour_node), b->first);
arcLabel.set(tour.addArc(b->second.tour_node, empty), "");
offset += b->first.length();
}
}
clog << "warning: Found " << components << " components; solution may be suboptimal by up to " << offset << " letters" << endl;
}
if (!lemon::eulerian(tour)) {
clog << "error: failed to make tour graph Eulerian" << endl;
return 1;
}
for (lemon::DiEulerIt<G> e(tour, empty); e != lemon::INVALID; ++e)
cout << arcLabel[e];
cout << endl;
return 0;
}