Terre fissurée générée par ordinateur


43

Ecrivez un programme qui prend un nombre entier compris entre 0 et 65535 (2 16 -1) et génère une image unique de 500 × 500 pixels qui ressemble le plus possible à ces 6 images réelles de sol fissuré:

échantillon de sol fissuré 1 échantillon de sol fissuré 2 échantillon de sol fissuré 3 échantillon de sol fissuré 4 échantillon de sol fissuré 5 échantillon de sol fissuré 6
Ce sont des vignettes, cliquez dessus pour voir les images en taille réelle 500 × 500.

Le but ici est de rendre vos images générées par ordinateur aussi photoréalistes que possible . Donc, idéalement, si une des images produites par votre programme était mélangée aux 6 images ci-dessus, une personne voyant les images pour la première fois ne pourrait pas distinguer les images générées par ordinateur des autres.

Le photoréalisme parfait est cependant délicat, alors faites de votre mieux. Il s’agit d’un sorte que les réponses aux résultats plus réalistes seront davantage votées et auront plus de chances de gagner.

Règles

  • Vous pouvez utiliser des fonctions de traitement d'images ou des bibliothèques.

  • Vous pouvez baser votre algorithme sur les informations recueillies à partir des 6 exemples d’images, mais vos 65536 (2 16 ) images de sortie possibles doivent être visuellement distinctes les unes des autres et des exemples d’images, notamment en ce qui concerne la disposition des fissures. Vous devez véritablement générer vos images, ne vous contentez pas de faire pivoter et de traduire une sélection à partir d'une photo préexistante.

  • Sinon, vous ne devriez pas coder en dur vos sorties. Un algorithme générique doit être utilisé et les nombres supérieurs à 65535 doivent théoriquement produire des sorties valides. (Je l'ai limité simplement pour prendre en charge les types entiers de petit maximum.)

  • Le nombre entier en entrée peut être considéré comme une graine qui produit une image de sortie de sol fissurée de manière aléatoire. Cela devrait cependant être déterministe, de sorte qu'une même entrée devrait toujours produire le même résultat.

  • Les images de sortie doivent faire exactement 500 × 500 pixels.

  • Les images de sortie peuvent être enregistrées dans n'importe quel format de fichier d'image commun ou simplement affichées.

  • Assurez-vous d'inclure quelques exemples d'images de sortie dans votre réponse, ainsi que leurs numéros d'entrée correspondants.

  • La réponse avec le plus de votes gagne. Les électeurs devraient bien sûr choisir les réponses qui ont pour but de produire des images similaires aux 6 échantillons, et ceux qui contreviennent aux règles ou aux résultats incohérents.

Les 6 exemples d’images proviennent de texturelib.com . Des sélections de zone de 1000 × 1000 pixels ont été prises à partir de deux images plus grandes de sol fissuré, puis redimensionnées à 500 × 500. Vous pouvez utiliser l'analyse de ces images plus grandes dans votre programme, mais la sortie doit imiter spécifiquement les 6 images d'échantillonnage choisies.


6
J'ai voté en faveur de la clôture de ce défi en tant que Too Broad, faute de critères de validité objectifs .
AdmBorkBork

4
@HelkaHomba Le fait qu'un vieux défi ait été bien reçu ou non n'aurait pas eu d'incidence sur le fait de savoir si un défi était maintenant conforme aux règles du site telles que décidées par consensus. Les PopCons ont eu d’énormes discussions au cours des derniers mois, l’un des résultats étant que toutes les PopCons ont besoin d’un critère de validité objectif. Ce défi n'a pas ça. Donc, c'est trop large.
AdmBorkBork

15
Les règles actuelles sur les inconvénients de la pop sont si bêtes que je saisirais cette occasion pour les ignorer et voir comment ça se passe. Ce sujet a été abordé dans les méta où il a été discuté à mort mais rien ne change en réalité, donc je pense que la meilleure chance que quelque chose se produise est de garder un peu de pop contre et de voir comment ils vont.
xnor

6
Les critères de validité objective sont ici "uniques" (distincts des 65535 autres) et "500x500 pixels". La ressemblance avec les exemples d'images ne peut pas être définie objectivement, sans quoi ce ne serait pas un concours de popularité mais un défi de code.
Trichoplax

14
Je vois des inconvénients contre la pop comme "faire quelque chose de joli" sans aucune restriction, et de bons inconvénients comme "correspondre à cette spécification" avec un vote humain sur lequel correspond le mieux. Je vois vraiment ce défi comme une bonne chose.
Trichoplax

Réponses:


30

Mathematica

Un diagramme de Voronoï ressemble à ce dessin, tiré de Wikipedia, montrant 19 cellules, chacune contenant un seul point de départ. Une cellule est constituée de la sous-région de points dont le point de génération respectif est plus proche que n’importe quel autre point de départ.

Voronoi

Le code ci-dessous génère un diagramme à partir de 80 points aléatoires (dans la région carrée délimitée par (-1, -1) et (1,1)).

Il utilise les primitives de polygones (en 2D) du diagramme pour créer des polyèdres (en 3D). Imaginez que chaque polygone ait, juste en dessous, une traduction de lui-même (-.08 en z). Pensez aux deux polygones comme aux faces supérieure et inférieure d'un polyèdre. Des "faces latérales" sont ensuite ajoutées pour compléter le polyèdre.

Chaque polyèdre est ensuite traduit vers l'extérieur, à partir du centre de l'image, sur le plan xy; il s'éloigne du milieu. La magnitude de la translation varie directement avec la distance entre le point aléatoire d'origine du polyèdre et le centre de l'écran. Cette "dispersion" des polyèdres dans le plan xy a pour résultat des crevasses.

crackedMud[1]

une

crackedMud[65535]

dernier

Code

ClearAll[polyhedronFromPolygon, voronoiPolygons, generatingPointFromPolygon, crackedMud]


(* polyhedronFromPolygon returns a single polyhedron from a polygon *)

polyhedronFromPolygon[polygon_] :=      
 Module[{twoPolygons, verticesOfUpperPolygonCell, nVertices, n = 1},
 verticesOfUpperPolygonCell = Join @@ (polygon[[1]] /. {x_, y_} :> {{x, y, 0}, {x, y, -.08}});
 (* number of vertices in a single *Voronoi* cell *)
 nVertices = Length[verticesOfUpperPolygonCell]/2;   

(*vertex indices of the upper and lower polygon faces *)  
twoPolygons = Select[Range@(2*nVertices), #] & /@ {OddQ, EvenQ};    

(*vertex indices of a rectangular face of the polyhedron *)
While[n < nVertices + 1, AppendTo[twoPolygons,
    {twoPolygons[[1, n]], twoPolygons[[2, n]], 
     twoPolygons[[2, If[n + 1 < nVertices + 1, n + 1, 1]]], 
     twoPolygons[[1, If[n + 1 < nVertices + 1, n + 1, 1]]]}]; n++];
(*the graphics complex returned is a polyhedron, even though it says Polygon *)
 GraphicsComplex[verticesOfUpperPolygonCell, Polygon[twoPolygons]] ] 


(* takes two dimensional coordinates and returns all of the cells of a Voronoi diagram *)

voronoiPolygons[pts_] := 
Module[{voronoiRegion, data},
  voronoiRegion = VoronoiMesh[pts, ImageSize -> Medium, 
  PlotTheme -> "Lines", Axes -> True, AxesOrigin -> {0, 0}];
  data = Join @@ (MeshPrimitives[voronoiRegion, 2][[All, 1]] /. {x_, y_} :> {{x, y, 0}, {x, y, .04}});
 (* the mesh primitives are the polygons *)
  MeshPrimitives[voronoiRegion, 2]]   

(* Returns, in 3D, the point which was used to generate the nth Voronoi cell. *)
generatingPointFromPolygon[n_, points_, pgons_] := 
 FirstCase[points, {x_, y_} /; RegionMember[pgons[[n]], {x, y}] :> {x,y,0}]

crackedMud[seedNumber_] :- 
 Module[{pts, pts3D, geometricImage, nPts, polygons, polyhedra, centerPtinImage},
  SeedRandom[seedNumber];
  nPts = 80;
  pts = RandomReal[{-1, 1}, {nPts, 2}];
  pts3D = pts /. {x_, y_} :> {x, y, .0};
  polygons = voronoiPolygons[pts];
  polyhedra = polyhedronFromPolygon /@ polygons;
  centerPtinImage =   (Mean /@ (PlotRange /. 
        AbsoluteOptions[
         Graphics3D[{polyhedra, Blue, Point@pts3D}, Axes -> False, 
         Boxed -> False]])) /. {x_Real, y_, _} :> {x, y, 0};
  geometricImage =
  Graphics3D[{RGBColor[0.75, 0.75, 0.8], EdgeForm[Darker@Gray],
        (* # is the nth polygon which yields the nth polyhedron *)
        (* generatingPointFromPolygon returns the point the generated the #th polygon *)

     GeometricTransformation[{polyhedronFromPolygon[polygons[[#]]]},   
        TranslationTransform[(generatingPointFromPolygon[#, pts, polygons] - centerPtinImage)/5]] & /@ Range@nPts},
         Axes -> False,  Boxed -> False, ViewPoint -> {0., -1, 1.5}, 
         Background -> Black, ImageSize -> 1200];

     (*ImageTrim returns a 500 by 500 pixel clip from the center of the image *)
     ImageTrim[
        (*ImageEffect speckles the image *)
        ImageEffect[Rasterize[geometricImage], {"Noise", 1/5}], 
     {{250, 250}, {750, 750}}]
  ] 

Vous feriez bien de vous adapter à cela à un modéliste en verre brisé.
Sparr

@ Sparr, oui, cela ressemble à du verre brisé (ou des carreaux).
DavidC

Golfé ........?
Cat

@cat Non, ce n'est pas joué au golf.
DavidC

@DavidC Où sont tous les espaces? Est-ce que tu écris comme ça? Wolfram applique-t-il un code illisible?
Cat

24

Java

J'ai utilisé une approche basée sur des diagrammes de Voronoï récursifs. Les résultats ne semblent pas très réalistes, mais je suppose qu'ils vont bien.

Voici quelques exemples d'images (redimensionnées à 250x250 pour ne pas remplir l'écran en entier):

0:

Image 0

1:

Image 1

Plus de détails sur l'algorithme:

Toutes les images de cette section utilisent la même graine.

L'algorithme commence par générer un diagramme de Voronoï avec 5 points:

Diagramme de Voronoï

Si nous regardons les images originales dans le challenge, nous pouvons voir que les lignes ne sont pas toutes droites, nous pesons donc la distance par une valeur aléatoire, en fonction de l'angle par rapport au point. Aussi, des angles rapprochés donnent des valeurs plus proches. :

Diagramme de Voronoï pondéré

Maintenant, nous dessinons récursivement ces types de diagrammes de Voronoï à l’intérieur de chaque région, avec une ligne plus fine et plus transparente, et retirons l’arrière-plan, avec une profondeur de récursion maximale de 3, et nous obtenons:

Voronoï récursif

Maintenant, nous ajoutons simplement le fond brun pâle, et nous avons terminé!

Terminé!

Code:

Le code comprend trois classes Main.java, VoronoiPoint.javaet Vector.java:

Main.java:

import java.awt.Desktop;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Random;

import javax.imageio.ImageIO;

public class Main {
    public static int WIDTH = 500;
    public static int HEIGHT = 500;
    public static int RECURSION_LEVELS = 3;
    public static int AMOUNT_OF_POINTS = 5;
    public static int ROTATION_RESOLUTION = 600;
    public static int ROTATION_SMOOTHNESS = 10;
    public static int BACKGROUND = 0xFFE0CBAD;

    public static Random RAND;

    public static void main(String[] args) {

        int seed = new Random().nextInt(65536);
        if (args.length == 1) {
            System.out.println(Arrays.toString(args));
            seed = Integer.parseInt(args[0]);
        } else {
            System.out.println("Generated seed: " + seed);
        }
        RAND = new Random(seed);

        ArrayList<Vector> points = new ArrayList<Vector>();
        for (int x = 0; x < WIDTH; x++) {
            for (int y = 0; y < HEIGHT; y++) {
                points.add(new Vector(x, y));
            }
        }
        BufferedImage soil = generateSoil(WIDTH, HEIGHT, seed, points, AMOUNT_OF_POINTS, RECURSION_LEVELS);

        BufferedImage background = new BufferedImage(WIDTH, HEIGHT, BufferedImage.TYPE_INT_ARGB);
        for (int x = 0; x < background.getWidth(); x++) {
            for (int y = 0; y < background.getHeight(); y++) {
                background.setRGB(x, y, BACKGROUND ^ (RAND.nextInt(10) * 0x010101));
            }
        }

        Graphics g = background.getGraphics();
        g.drawImage(soil, 0, 0, null);
        g.dispose();

        String fileName = "soil";
        File output = new File(fileName + ".png");
        for (int i = 0; output.exists(); i++) {
            output = new File(fileName + i + ".png");
        }
        try {
            ImageIO.write(background, "png", output);
            Desktop.getDesktop().open(output);
        } catch (IOException e) {
            e.printStackTrace();
        }
        System.out.println("Done. Saved as " + output);
    }

    private static BufferedImage generateSoil(int width, int height, int seed, ArrayList<Vector> drawPoints,
            int amountOfPoints, int recursionLevel) {

        BufferedImage result = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);

        ArrayList<VoronoiPoint> points = new ArrayList<VoronoiPoint>();
        for (int i = 0; i < amountOfPoints; i++) {
            points.add(new VoronoiPoint(drawPoints.get(RAND.nextInt(drawPoints.size()))));
        }

        HashMap<Integer, ArrayList<Vector>> pointMaps = new HashMap<Integer, ArrayList<Vector>>();
        for (VoronoiPoint point : points) {
            pointMaps.put(point.hashCode(), new ArrayList<Vector>());
        }
        System.out.println(pointMaps);

        System.out.println(points);

        for (Vector v : drawPoints) {
            VoronoiPoint closest = null;
            VoronoiPoint secondClosest = null;

            for (VoronoiPoint point : points) {
                double distance = point.getMultiplicativeDistanceTo(v);
                if (closest == null || distance < closest.getMultiplicativeDistanceTo(v)) {
                    secondClosest = closest;
                    closest = point;
                } else if (secondClosest == null || distance < secondClosest.getMultiplicativeDistanceTo(v)) {
                    secondClosest = point;
                }
            }

            int col = 0;
            if (Math.abs(closest.getMultiplicativeDistanceTo(v)
                    - secondClosest.getMultiplicativeDistanceTo(v)) < (recursionLevel * 5 / RECURSION_LEVELS)) {
                col = 0x01000000 * (recursionLevel * 255 / RECURSION_LEVELS);
            } else {
                pointMaps.get(closest.hashCode()).add(v);
            }
            result.setRGB((int) v.getX(), (int) v.getY(), col);
        }
        Graphics g = result.getGraphics();
        if (recursionLevel > 0) {
            for (ArrayList<Vector> pixels : pointMaps.values()) {
                if (pixels.size() > 10) {
                    BufferedImage img = generateSoil(width, height, seed, pixels, amountOfPoints,
                            recursionLevel - 1);
                    g.drawImage(img, 0, 0, null);
                }
            }
        }
        g.dispose();

        return result;
    }

    public static int modInts(int a, int b) {
        return (int) mod(a, b);
    }

    public static double mod(double a, double b) {
        a = a % b;
        while (a < 0)
            a += b;
        return a;
    }
}

VoronoiPoint.java:

public class VoronoiPoint {

    private Vector pos;
    private double[] distances;

    public VoronoiPoint(Vector pos) {
        this.pos = pos;
        distances = new double[Main.ROTATION_RESOLUTION];
        for (int i = 0; i < distances.length; i++)
            distances[i] = Main.RAND.nextFloat() / 2 + 0.51;

        for (int iter = 0; iter < Main.ROTATION_SMOOTHNESS; iter++) {
            for (int i = 0; i < distances.length; i++) {
                distances[i] = (distances[Main.modInts(i - Main.RAND.nextInt(4) - 2, distances.length)] + distances[i]
                        + distances[Main.modInts(i + Main.RAND.nextInt(4) - 2, distances.length)]) / 3;
            }
        }
    }

    public Vector getPos() {
        return pos;
    }

    public double getRotationFromAngle(double radians) {
        return distances[(int) (Main.mod(Math.toDegrees(radians) / 360, 1) * distances.length)];
    }

    public double getRotationFromVector(Vector vec) {
        return getRotationFromAngle(Math.atan2(pos.getY() - vec.getY(), -(pos.getX() - vec.getX())));
    }

    public double getMultiplicativeDistanceTo(Vector other) {
        return pos.getLengthTo(other) * getRotationFromVector(other);
    }

    public String toString() {
        return "VoronoiPoint(pos=[" + pos.getX() + ", " + pos.getY() + "])";
    }

    public int hashCode() {
        return distances.hashCode() ^ pos.hashCode();
    }
}

Vector.java: (Cette classe est copiée depuis l'un de mes autres projets, elle contient donc du code inutile)

package com.loovjo.soil;

import java.util.ArrayList;
import java.util.Random;

public class Vector {
    private static final float SMALL = 1f / Float.MAX_EXPONENT * 100;
    private float x, y;

    public Vector(float x, float y) {
        this.setX(x);
        this.setY(y);
    }

    public Vector(int x, int y) {
        this.setX(x);
        this.setY(y);
    }

    public Vector(double x, double y) {
        this.setX((float) x);
        this.setY((float) y);
    }

    public float getY() {
        return y;
    }

    public void setY(float y) {
        this.y = y;
    }

    public float getX() {
        return x;
    }

    public void setX(float x) {
        this.x = x;
    }

    /*
     * Gets the length ^ 2 This is faster than getting the length.
     */
    public float getLengthToSqrd(float x, float y) {
        return (float) ((this.x - x) * (this.x - x) + (this.y - y) * (this.y - y));
    }

    public float getLengthToSqrd(Vector v) {
        return getLengthToSqrd(v.x, v.y);
    }

    public float getLengthSqrd() {
        return getLengthToSqrd(0, 0);
    }

    public float getLengthTo(float x, float y) {
        return (float) Math.sqrt(getLengthToSqrd(x, y));
    }

    public float getLengthTo(Vector v) {
        return getLengthTo(v.x, v.y);
    }

    public float getLength() {
        return getLengthTo(0, 0);
    }

    public Vector setLength(float setLength) {
        float length = getLength();
        x *= setLength / length;
        y *= setLength / length;
        return this;
    }

    public float getFastLengthTo(float x, float y) {
        return getFastLengthTo(new Vector(x, y));
    }

    public float getFastLengthTo(Vector v) {
        float taxiLength = getTaxiCabLengthTo(v);
        float chebyDist = getChebyshevDistanceTo(v);
        return Float.min(taxiLength * 0.7f, chebyDist);
    }

    public float getFastLength() {
        return getLengthTo(0, 0);
    }

    public Vector setFastLength(float setLength) {
        float length = getFastLength();
        x *= setLength / length;
        y *= setLength / length;
        return this;
    }

    public float getTaxiCabLengthTo(float x, float y) {
        return Math.abs(this.x - x) + Math.abs(this.y - y);
    }

    public float getTaxiCabLengthTo(Vector v) {
        return getTaxiCabLengthTo(v.x, v.y);
    }

    public float getTaxiCabLength() {
        return getTaxiCabLengthTo(0, 0);
    }

    public Vector setTaxiCabLength(float setLength) {
        float length = getTaxiCabLength();
        x *= setLength / length;
        y *= setLength / length;
        return this;
    }

    public Vector absIfBoth() {
        if (x < 0 && y < 0)
            return new Vector(-x, -y);
        return this;
    }

    public Vector abs() {
        return new Vector(x < 0 ? -x : x, y < 0 ? -y : y);
    }

    public float getChebyshevDistanceTo(float x, float y) {
        return Math.max(Math.abs(this.x - x), Math.abs(this.y - y));
    }

    public float getChebyshevDistanceTo(Vector v) {
        return getChebyshevDistanceTo(v.x, v.y);
    }

    public float getChebyshevDistance() {
        return getChebyshevDistanceTo(0, 0);
    }

    public Vector setChebyshevLength(float setLength) {
        float length = getChebyshevDistance();
        x *= setLength / length;
        y *= setLength / length;
        return this;
    }

    public Vector sub(Vector v) {
        return new Vector(this.x - v.getX(), this.y - v.getY());
    }

    public Vector add(Vector v) {
        return new Vector(this.x + v.getX(), this.y + v.getY());
    }

    public Vector mul(Vector v) {
        return new Vector(this.x * v.getX(), this.y * v.getY());
    }

    public Vector mul(float f) {
        return mul(new Vector(f, f));
    }

    public Vector div(Vector v) {
        return new Vector(this.x / v.getX(), this.y / v.getY());
    }

    public Vector div(float f) {
        return div(new Vector(f, f));
    }

    public Vector mod(Vector v) {
        return new Vector(this.x % v.getX(), this.y % v.getY());
    }

    public Vector mod(int a, int b) {
        return mod(new Vector(a, b));
    }

    public Vector mod(int a) {
        return mod(a, a);
    }

    public String toString() {
        return "Vector(" + getX() + ", " + getY() + ")";
    }

    /*
     * Returns a list with vectors, starting with this, ending with to, and each
     * one having length between them
     */
    public ArrayList<Vector> loop(Vector to, float length) {
        Vector delta = this.sub(to);
        float l = delta.getLength();
        ArrayList<Vector> loops = new ArrayList<Vector>();
        for (float i = length; i < l; i += length) {
            delta.setLength(i);
            loops.add(delta.add(to));
        }
        loops.add(this);

        return loops;
    }

    public boolean intersects(Vector pos, Vector size) {
        pos.sub(this);
        if (pos.getX() < getX())
            return false;
        if (pos.getY() < getY())
            return false;
        return true;
    }

    public Vector copy() {
        return new Vector(x, y);
    }

    public void distort(float d) {
        x += Math.random() * d - d / 2;
        y += Math.random() * d - d / 2;
    }

    @Override
    public boolean equals(Object o) {
        if (o instanceof Vector) {
            Vector v = (Vector) o;
            return getLengthToSquared(v) < SMALL * SMALL;
        }
        return false;
    }

    private float getLengthToSquared(Vector v) {
        return sub(v).getLengthSquared();
    }

    private float getLengthSquared() {
        return x * x + y * y;
    }

    public boolean kindaEquals(Vector o, int i) {
        if (o.x + i < x)
            return false;
        if (o.x - i > x)
            return false;
        if (o.y + i < y)
            return false;
        if (o.y - i > y)
            return false;
        return true;
    }
    /*
     * Gets the direction, from 0 to 8.
     */
    public int getDirection() {
        return (getDirectionInDegrees()) / (360 / 8);
    }
    /*
     * Gets the direction in degrees.
     */
    public int getDirectionInDegrees() {
        return (int) positize((float) Math.toDegrees(Math.atan2(x, -y)), 360f);
    }

    private float positize(float f, float base) {
        while (f < 0)
            f += base;
        return f;
    }
    // 0 = north,
            // 1 = northeast,
            // 2 = east,
            // 3 = southeast,
            // 4 = south,
            // 5 = southwest,
            // 6 = west,
            // 7 = northwest
    public Vector moveInDir(int d) {
        d = d % 8;
        d = (int) positize(d, 8);

        if (d == 0)
            return this.add(new Vector(0, -1));
        if (d == 1)
            return this.add(new Vector(1, -1));
        if (d == 2)
            return this.add(new Vector(1, 0));
        if (d == 3)
            return this.add(new Vector(1, 1));
        if (d == 4)
            return this.add(new Vector(0, 1));
        if (d == 5)
            return this.add(new Vector(-1, 1));
        if (d == 6)
            return this.add(new Vector(-1, 0));
        if (d == 7)
            return this.add(new Vector(-1, -1));
        return this;
    }
    /*
     * Gets the angle in degrees to o.
     */
    public float getRotationTo(Vector o) {
        float d = (float) Math.toDegrees((Math.atan2(y - o.y, -(x - o.x))));
        while (d < 0)
            d += 360;
        while (d > 360)
            d -= 360;
        return d;
    }
    public float getRotation() {
        return getRotationTo(new Vector(0, 0));
    }
    /*
     * In degrees
     */
    public Vector rotate(double n) {
        n = Math.toRadians(n);
        float rx = (float) ((this.x * Math.cos(n)) - (this.y * Math.sin(n)));
        float ry = (float) ((this.x * Math.sin(n)) + (this.y * Math.cos(n)));
        return new Vector(rx, ry);
    }

    public int hashCode() {
        int xx = (int) x ^ (int)(x * Integer.MAX_VALUE);
        int yy = (int) y ^ (int)(y * Integer.MAX_VALUE);
        return new Random(12665 * xx).nextInt() ^ new Random(5349 * yy).nextInt() + new Random((30513 * xx) ^ (19972 * yy)).nextInt();
    }

    public boolean isPositive() {
        return x >= 0 && y >= 0;
    }

    public Vector clone() {
        return new Vector(x, y);
    }
}

Mais je ne veux pas compiler un tas de classes Java!

Voici un fichier JAR que vous pouvez exécuter pour générer ces images vous-même. Courir en tant que java -jar Soil.jar number, où numberest la graine (peut être n'importe quoi jusqu'à 2 31 -1), ou en tant que java -jar Soil.jar, et il choisit une graine lui-même. Il y aura une sortie de débogage.


Pour une raison quelconque, je trouve ces images à la fois assez réalistes et complètement fausses. Le manque d'ombres naturelles me rejette.
Fataliser

Si cela vous aide, vous pouvez télécharger des images en taille réelle et en faire de petites vignettes, comme dans le post du défi, ou des images moyennes de taille égale à 2 pour occuper moins d'espace vertical. Dans la source du défi, vous pouvez voir comment l'ajout d'un "s" dans l'adresse imgur réduit la taille des images et vous pouvez également utiliser un "m" pour le support. La source montre également comment transformer la petite image en lien avec l'image en taille réelle.
Trichoplax

2
Je pense que les couleurs pourraient être beaucoup plus proches - plus de gris, moins de beige. Mais sinon, bonne réponse!
Les passe-temps de Calvin

12

Python 3 (utilisant la bibliothèque Kivy et GLSL)

Première image générée

entrez la description de l'image ici

Code Python:

import os
os.environ['KIVY_NO_ARGS'] = '1'

from kivy.config import Config
Config.set('input','mouse','mouse,disable_multitouch')
Config.set('graphics', 'width', '500')
Config.set('graphics', 'height', '500')
Config.set('graphics', 'resizable', '0')
Config.set('graphics', 'borderless', '1')
Config.set('graphics', 'fbo', 'force-hardware')

from kivy.app import App
from kivy.graphics import RenderContext, Fbo, Color, Rectangle
from kivy.clock import Clock
from kivy.uix.floatlayout import FloatLayout
from kivy.factory import Factory
from kivy.core.window import Window

class ShaderSurface(FloatLayout):
    seed = 0.

    def __init__(self, **kwargs):
        self.canvas = RenderContext(use_parent_projection=True, use_parent_modelview=True)
        with self.canvas:
            self.fbo = Fbo(size=Window.size, use_parent_projection=True)

        with self.fbo:
            Color(0,0,0)
            Rectangle(size=Window.size)

        self.texture = self.fbo.texture

        super(ShaderSurface, self).__init__(**kwargs)
        self.keyboard = Window.request_keyboard(self.keyboard_closed, self)
        self.keyboard.bind(on_key_down=self.on_key_down)
        Clock.schedule_once(self.update_shader,-1)

    def keyboard_closed(self):
        self.keyboard.unbind(on_key_down=self.on_key_down)
        self.keyboard = None

    def update_shader(self, dt=0.):
        self.canvas['resolution'] = list(map(float, self.size))
        self.canvas['seed'] = self.seed
        self.canvas.ask_update()

    def on_key_down(self, keyboard, keycode, text, modifiers):
        if keycode[1] == 'spacebar':
            self.seed += 1.
            self.update_shader()
            Window.screenshot()

Factory.register('ShaderSurface', cls=ShaderSurface)

class RendererApp(App):
    def build(self):
        self.root.canvas.shader.source = 'cracks_sub.glsl'

if __name__ == '__main__':
    RendererApp().run()

Fichier KV:

#:kivy 1.9

ShaderSurface:
    canvas:
        Color:
            rgb: 1, 1, 1
        Rectangle:
            size: self.size
            pos: self.pos
            texture: root.fbo.texture

Code GLSL:

---VERTEX---
uniform vec2        resolution;
in vec2             vPosition;

void main()
{
    gl_Position = vec4(vPosition.xy-resolution/2., 0, 1);
}
---FRAGMENT---
#version 330
precision highp float;

out vec4 frag_color;

uniform vec2 resolution;
uniform float seed;

vec2 tr(vec2 p)
{
    p /= resolution.xy;
    p = -1.0+2.0*p;
    p.y *= resolution.y/resolution.x;
    return p;
}

float hash( float n ){
    return fract(sin(n)*43758.5453);
}

float noise( vec2 uv ){
    vec3 x = vec3(uv, 0);

    vec3 p = floor(x);
    vec3 f = fract(x);

    f       = f*f*(3.0-2.0*f);
    float n = p.x + p.y*57.0 + 113.0*p.z;

    return mix(mix(mix( hash(n+0.0), hash(n+1.0),f.x),
                   mix( hash(n+57.0), hash(n+58.0),f.x),f.y),
               mix(mix( hash(n+113.0), hash(n+114.0),f.x),
                   mix( hash(n+170.0), hash(n+171.0),f.x),f.y),f.z);
}

mat2 m = mat2(0.8,0.6,-0.6,0.8);

float fbm(vec2 p)
{
    float f = 0.0;
    f += 0.5000*noise( p ); p*=m*2.02;
    f += 0.2500*noise( p ); p*=m*2.03;
    f += 0.1250*noise( p ); p*=m*2.01;
    f += 0.0625*noise( p );
    f /= 0.9375;
    return f;
}

vec2 hash2( vec2 p )
{
    return fract(sin(vec2(dot(p,vec2(127.1,311.7)),dot(p,vec2(269.5,183.3))))*43758.5453);
}

float voronoi(vec2 x, out vec2 rt)
{
    vec2 p = floor(x);
    vec2 f = fract(x);

    vec2 mb, mr;

    float res = 8.0;
    for( int j=-1; j<=1; j++)
    for( int i=-1; i<=1; i++)
    {
        vec2 b = vec2(float(i),float(j));
        vec2 r = b+hash2(p+b)-f;
        float d = dot(r,r);

        if( d<res )
        {
            res = d;
            mr = r;
            mb = b;
            rt=r;
        }
    }


    res = 8.0;
    for( int j=-2; j<=2; j++ )
    for( int i=-2; i<=2; i++ )
    {
        vec2 b = mb + vec2(float(i),float(j));
        vec2 r = b + hash2(p+b)-f;
        float d = dot((res*res)*(mr+r),normalize(r-mr));

        res = min(res,d);
    }


    return res;
}

float crack(vec2 p)
{
    float g = mod(seed,65536./4.);
    p.x+=g;
    p.y-=seed-g;
    p.y*=1.3;
    p.x+=noise(p*4.)*.08;
    float k = 0.;
    vec2 rb = vec2(.0);
    k=voronoi(p*2.,rb);
    k=smoothstep(.0,.3,k*.05);
    float v = 0.;
    v=voronoi(rb*4.,rb);
    v=smoothstep(.0,.5,v*.05);
    k*=v;
    k-=fbm(p*128.)*.3;
    return k;
}

void main( void )
{
    vec2 fc = gl_FragCoord.xy;
    vec2 p = tr(fc);
    vec3 col = vec3(.39,.37,.25);

    vec3 abb = vec3(.14,.12,.10)/5.;

    p*=(1.+length(p)*.1);

    col.r*=crack(vec2(p.x+abb.x,p.y));
    col.g*=crack(vec2(p.x+abb.y,p.y));
    col.b*=crack(vec2(p.x+abb.z,p.y));

    col*=smoothstep(4.,1.2,dot(p,p));
    col*=exp(.66);

    //col=vec3(crack(p));
    frag_color = vec4(col,1.);
}

La fonction voronoi dans le code GLSL provient de Íñigo Quílez. Chaque calcul lié au voronoï se produit entièrement dans le fragment shader avec certaines fonctions de bruit procédural permettant de créer des mouchetures et de perturber un peu les lignes du motif de voronoï.

En appuyant sur espace, la graine sera augmentée de 1 et une nouvelle image sera générée et sauvegardée sous forme de .pngfichier.

Mise à jour: ajout de la distorsion des lentilles, du vignettage et de l'aberration chromatique pour le rendre plus réaliste. Ajout du motif sous-voronoï.


Cela peut-il aussi prendre une graine en entrée?
Trichoplax

La classe ShaderSurface a un membre de la classe seed. Ce sera transmis au shader sous forme de variable de flottement uniforme. Dans la fonction crack du shader, la graine est utilisée pour traduire le point par la valeur de la graine.
Gábor Fekete

1

Java

import java.awt.Color;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.Random;
import java.util.Scanner;

import javax.imageio.ImageIO;

public class CrackedSoil {
    static BufferedImage b;
    static Random rand;
    public static int distance(int col1,int col2){
        Color a=new Color(col1);
        Color b=new Color(col2);
        return (int)(Math.pow(a.getRed()-b.getRed(), 2)+Math.pow(a.getGreen()-b.getGreen(), 2)+Math.pow(a.getBlue()-b.getBlue(), 2));
    }
    public static void edge(){
        boolean[][] edges=new boolean[500][500];
        int threshold=125+rand.nextInt(55);
        for(int x=1;x<499;x++){
            for(int y=1;y<499;y++){
                int rgb=b.getRGB(x, y);
                int del=0;
                for(int i=-1;i<=1;i++){
                    for(int j=-1;i<=j;i++){
                        del+=distance(rgb,b.getRGB(x+i, y+j));
                    }
                }
                edges[x][y]=del>threshold;
            }
        }
        for(int x=0;x<500;x++){
            for(int y=0;y<500;y++){
                if(edges[x][y])b.setRGB(x, y,new Color(4+rand.nextInt(4),4+rand.nextInt(4),4+rand.nextInt(4)).getRGB());
            }
        }
    }
    public static void main(String[]arg) throws IOException{
        b=new BufferedImage(500,500,BufferedImage.TYPE_INT_RGB);
        Scanner scanner=new Scanner(System.in);
        rand=new Random(scanner.nextInt());
        int numPoints=10+rand.nextInt(15);
        Color[]c=new Color[numPoints];
        int[][]ints=new int[numPoints][2];
        int[]weights=new int[numPoints];
        for(int i=0;i<numPoints;i++){
            switch(i%4){
            case 0:ints[i]=new int[]{251+rand.nextInt(240),7+rand.nextInt(240)};break;
            case 1:ints[i]=new int[]{7+rand.nextInt(240),7+rand.nextInt(240)};break;
            case 2:ints[i]=new int[]{7+rand.nextInt(240),251+rand.nextInt(240)};break;
            case 3:ints[i]=new int[]{251+rand.nextInt(240),251+rand.nextInt(240)};break;
            }

            c[i]=new Color(40+rand.nextInt(200),40+rand.nextInt(200),40+rand.nextInt(200));
            weights[i]=50+rand.nextInt(15);
        }
        for(int x=0;x<500;x++){
            for(int y=0;y<500;y++){
                double d=999999;
                Color col=Color.BLACK;
                for(int i=0;i<numPoints;i++){
                    double d2=weights[i]*Math.sqrt((x-ints[i][0])*(x-ints[i][0])+(y-ints[i][1])*(y-ints[i][1]));
                    if(d2<d){
                        d=d2;
                        col=c[i];
                    }
                }
                b.setRGB(x, y,col.getRGB());
            }
        }
        //ImageIO.write(b,"png",new File("voronoi1.png"));
        for(int i=0;i<numPoints/3;i++){
            ints[i]=new int[]{7+rand.nextInt(490),7+rand.nextInt(490)};
            c[i]=new Color(40+rand.nextInt(200),40+rand.nextInt(200),40+rand.nextInt(200));
            weights[i]=50+rand.nextInt(5);
        }
        for(int x=0;x<500;x++){
            for(int y=0;y<500;y++){
                double d=999999;
                Color col=Color.BLACK;
                for(int i=0;i<numPoints/3;i++){
                    double d2=weights[i]*Math.sqrt((x-ints[i][0])*(x-ints[i][0])+(y-ints[i][1])*(y-ints[i][1]));
                    if(d2<d){
                        d=d2;
                        col=c[i];
                    }
                }
                Color col3=new Color(b.getRGB(x, y));
                b.setRGB(x, y,new Color((col3.getRed()+col.getRed()*3)/4,(col3.getGreen()+col.getGreen()*3)/4,(col3.getBlue()+col.getBlue()*3)/4).getRGB());
            }
        }
        //ImageIO.write(b,"png",new File("voronoi2.png"));
        for(int i=2+rand.nextInt(3);i>0;i--)edge();
        //ImageIO.write(b,"png",new File("voronoi_edge.png"));
        for(int x=0;x<500;x++){
            for(int y=0;y<500;y++){
                Color col=new Color(b.getRGB(x, y));
                if(col.getRed()+col.getBlue()+col.getGreen()>50){
                    if(rand.nextDouble()<0.95){
                        b.setRGB(x, y,new Color(150+rand.nextInt(9),145+rand.nextInt(9),135+rand.nextInt(9)).getRGB());
                    }else{
                        b.setRGB(x, y,new Color(120+col.getRed()/7+rand.nextInt(12),115+col.getGreen()/7+rand.nextInt(12),105+col.getBlue()/7+rand.nextInt(12)).getRGB());
                    }
                }
            }
        }
        ImageIO.write(b,"png",new File("soil.png"));
    }
}

Crée un composite de deux diagrammes aléatoires qui est ensuite analysé par une simple détection de contour et converti en résultat final.

Quelques sorties:

entrez la description de l'image ici

entrez la description de l'image ici

entrez la description de l'image ici

Quelques étapes intermédiaires pour cette dernière:

entrez la description de l'image ici

(Le premier diagramme de voronoï)

entrez la description de l'image ici

(Le composite des deux diagrammes de voronoï)

entrez la description de l'image ici

(Après l'étape de détection de bord mais avant la recoloration finale)

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.