Imprimer la spirale NxN des nombres ascendants [fermé]


12

Les nombres doivent être imprimés avec des zéros en tête dans un champ de longueur = (nombre de chiffres de N ^ 2).

Entrée (N):

4

Production:

01 12 11 10
02 13 16 09
03 14 15 08
04 05 06 07

Je m'intéresse à l'algorithme et à la propreté de l'implémentation. Ainsi, l'espace blanc ne compte pas et la limite supérieure pour N est 42.


oui selon moi.
Wile E. Coyote

D'après mes calculs, la longueur du champ est L = floor(log10(N^2)) + 1Est-ce correct?
Hristo Hristov

Quelle est la limite supérieure N?

Je m'intéresse à l'algorithme et à la propreté de l'implémentation. Alors, ne nous embêtons pas avec de très grands nombres et fixons la limite supérieure de N à 42 :)
Hristo Hristov

Était-ce motivé par la spirale Ulam ? (bien que votre spirale descende si elle est vue comme commençant de l'intérieur)
smci

Réponses:


6

Python

n=input()

matrix=[[j+1]*n for j in range(n)]

x=y=0
for i in range(n)[::-2]:
    x+=i*4;y+=1

    for j in range(i):
        matrix[j+y-1][y]=x+j

    matrix[y-1][y:y+i]=range(x,x-i,-1)

    R=matrix[n-y][y-1]+1
    matrix[n-y][y:n-y+1]=range(R,R+i)

    for j in range(y,y+i-1):
        matrix[j][n-y]=matrix[j-1][n-y]-1

for row in matrix:
    print ' '.join(`r`.zfill(len(`n*n`)) for r in row)
  • Une approche qui précalcule les nombres d'angle. Par exemple, pour la boîte 9x, 32 56 72 80, qui est (n-1) * 4 où n est la taille de la boîte (9,7,5,3) dans ce cas.
  • Le côté droit de ces nombres est 1, et de haut en bas est 1+, donc générez essentiellement de gauche à droite, de haut en bas, de bas à droite, de droite à haut.

entrez la description de l'image ici

$ echo 9 | python codegolf-769-me.py
01 32 31 30 29 28 27 26 25
02 33 56 55 54 53 52 51 24
03 34 57 72 71 70 69 50 23
04 35 58 73 80 79 68 49 22
05 36 59 74 81 78 67 48 21
06 37 60 75 76 77 66 47 20
07 38 61 62 63 64 65 46 19
08 39 40 41 42 43 44 45 18
09 10 11 12 13 14 15 16 17

Autres tests

$ echo 2 | python codegolf-769-me.py
1 4
2 3

$ echo 5 | python codegolf-769-me.py
01 16 15 14 13
02 17 24 23 12
03 18 25 22 11
04 19 20 21 10
05 06 07 08 09

$ echo 10 | python codegolf-769-me.py
001 036 035 034 033 032 031 030 029 028
002 037 064 063 062 061 060 059 058 027
003 038 065 084 083 082 081 080 057 026
004 039 066 085 096 095 094 079 056 025
005 040 067 086 097 100 093 078 055 024
006 041 068 087 098 099 092 077 054 023
007 042 069 088 089 090 091 076 053 022
008 043 070 071 072 073 074 075 052 021
009 044 045 046 047 048 049 050 051 020
010 011 012 013 014 015 016 017 018 019

5

En rubis:

N=gets.to_i

index = -N
width = N
result = []
n = 0
dir=-1

while n < N*N
        dir = (dir + 1) % 4
        dir_x, dir_y = [[0,1],[1,0],[0,-1],[-1,0]][dir]
        width -= 1 if [1,3].include?(dir)

        1.upto(width) { |m|
                n += 1
                index += dir_y * N + dir_x
                result[index] = n
        }
end

width = (N*N).to_s.size
result.each_slice(N) { |l|
        print l.map {|n| "%0#{width}d" % n }.join(" "), "\n"
}

Tester:

$ ruby1.9 769.rb <<< 9
01 32 31 30 29 28 27 26 25
02 33 56 55 54 53 52 51 24
03 34 57 72 71 70 69 50 23
04 35 58 73 80 79 68 49 22
05 36 59 74 81 78 67 48 21
06 37 60 75 76 77 66 47 20
07 38 61 62 63 64 65 46 19
08 39 40 41 42 43 44 45 18
09 10 11 12 13 14 15 16 17

Une autre solution utilisant des calculs d' ici :

N=gets.to_i
r=[]

tr=->x,y{ x+(N-1)/2 + (y+(N-1)/2+(N-1)%2)*N }

r[tr[0,0]] = N*N

1.upto(N*N-1) { |n|
        shell = ((Math.sqrt(n)+1)/2).to_i
        leg = (n-(2*shell-1)**2)/(2*shell)
        element = (n-(2*shell-1)**2)-2*shell*leg-shell+1
        x,y = [[element,-shell],[shell,element],[-element,shell],[-shell,-element]][leg]
        r[tr[x,y]] = N*N-n
}

r.each_slice(N) {|l|
        puts l.map { |n|
                "%0#{(N*N).to_s.size}d" % (n or 0)
        }.join(" ")
}

Tester:

$ ruby1.9 769-2.rb <<< 5
01 16 15 14 13
02 17 24 23 12
03 18 25 22 11
04 19 20 21 10
05 06 07 08 09

5

En Python3:

n=int(input())
results = {}
val = 1
location = (0,0)
direction = (0,1)

def nxt():
    return (location[0]+direction[0], location[1]+direction[1])

while val<=n*n:
    if set([-1,n]).intersection(nxt()) or nxt() in results:
        direction = (direction[1],direction[0]*-1)

    results[location], location, val = str(val), nxt(), val+1

slen = len(str(n*n))
for y in range(n):
    print( *[results[(x,y)].rjust(slen,'0') for x in range(n)] )

Exemple de sortie pour 7:

01 24 23 22 21 20 19
02 25 40 39 38 37 18
03 26 41 48 47 36 17
04 27 42 49 46 35 16
05 28 43 44 45 34 15
06 29 30 31 32 33 14
07 08 09 10 11 12 13

edit: Une solution récursive - 263 octets

def a(m,s):
 b,r,t=m-s*s+1,s-1,range
 return[[[]],[[m]]][s]if s<2 else[[b]+list(t(b+4*r-1,b+3*r-1,-1))]+[[b+y+1]+a(m,s-2)[y]+[b+3*r-y-1]for y in t(s-2)]+[list(t(b+r,b+2*r+1))]
n=int(input())
for r in a(n*n,n):
 print(*[str(x).zfill(len(str(n*n)))for x in r])

Belle solution, je l'ai vérifié sur ideone.com/u43VJ , cela fonctionne avec Python3 (pouvez-vous s'il vous plaît noter ceci). Merci!
Hristo Hristov

4

Solution Java

public static void main(String[] args) {
        int INPUT = 5;
        String[][] grid = new String[INPUT][INPUT];
        int xDirection = 0;
        int yDirection = 0;
        int flag = 1;
        for (int i = 0; i < INPUT * INPUT; i++) {
            String temp = "";
            for (int k = 0; k < (""+INPUT*INPUT).length() - ("" + (i + 1)).length(); k++) {
                temp += "" + 0;
            }
            temp += (i + 1);

            if (xDirection > INPUT-1)
                {flag=2; yDirection++; xDirection--; i--; continue;}
            else if (yDirection > INPUT -1)
                {flag=3; yDirection--; xDirection--; i--; continue;}
            else if (xDirection < 0)
                {flag=4; xDirection++; yDirection--; i--; continue;}



            if ( grid[xDirection][yDirection]==null ){
                    grid[xDirection][yDirection] = ""+temp;
            }
                else{
                if (flag ==1 ) {
                    flag=2;
                    xDirection--;
                }
                else if (flag ==2){
                    flag=3;
                    yDirection--;
                }
                else if (flag==3){
                    flag=4;
                    xDirection++;
                }
                else{
                    flag=1;
                    yDirection++;
                }
                i--;
            }
            switch(flag){
            case 1: xDirection++;break;
            case 2: yDirection++;break;
            case 3: xDirection--;break;
            case 4: yDirection--; break;
            }
        }
        for (int i = 0; i < INPUT; i++) {
            for (int k = 0; k < INPUT; k++)
                System.out.print(grid[i][k] + " ");
            System.out.println();
        }
    }

exemple de sortie pour l'entrée 10

001 036 035 034 033 032 031 030 029 028 
002 037 064 063 062 061 060 059 058 027 
003 038 065 084 083 082 081 080 057 026 
004 039 066 085 096 095 094 079 056 025 
005 040 067 086 097 100 093 078 055 024 
006 041 068 087 098 099 092 077 054 023 
007 042 069 088 089 090 091 076 053 022 
008 043 070 071 072 073 074 075 052 021 
009 044 045 046 047 048 049 050 051 020 
010 011 012 013 014 015 016 017 018 019 

Cool, je l'ai vérifié et cela fonctionne: ideone.com/mLoJX
Hristo Hristov

Mais, il imprime des informations supplémentaires, seule la sortie souhaitée est nécessaire. Et, ce sera super cool s'il peut être rendu moins verbeux.
Hristo Hristov

De plus, la fonction principale doit être placée dans une classe.
Hristo Hristov

Ah! .. oublié de commenter les sysouts de débogage :(
Aman ZeeK Verma

peut-être pouvez-vous le corriger dans votre code?
Hristo Hristov

4

Perl, 178 caractères

Utilise Math :: Complex et maintient la direction actuelle dans une variable complexe (1 / i / -1 / .i). Courir avec:

$ perl -MMath::Complex spiral.pl

Mettre Nen $l.

# $l = shift;
$d=i;
$x=0;
until($s{$x}){
    $s{$x}=++$n;
    $x+=$d;
    $d*=-i if
        Re($x)==Im($x)+(Re($x)<$l/2)
        ||Re($x)==$l-1-Im($x)
}
for$y(0..$l-1){
    printf'%0'.length($l**2).'d ',$s{$_+i*$y}for 0..$l-1;
    print"\n"
}

3

C

#include<stdio.h>
#include<math.h>

int main() {
    int A[42][42],i,j,N,c=1,k;
    scanf("%d",&N);
    for (i = 0, j = N - 1 ; j >= 0 ; i++, j--) {
            for(k = i ; k < j; k++)A[i][k]=c++;
            for(k = i ; k < j; k++)A[k][j]=c++;
            for(k = j ; k > i; k--)A[j][k]=c++;
            for(k = j ; k > i; k--)A[k][i]=c++;
    }
    if (N%2)
       A[N/2][N/2]=c;
    for (i=0;i<N;i++) {
        for (j=0;j<N;j++)
            printf("%0*d ",((int)log10(N*N)+1),A[j][i]);
        printf("\n");
    }
}

3

Python 2.7:

def spiral(n):
   rows = [[n * n]]
   current = n * n - 1

   while current:
      rows = zip(*([range(current, current - len(rows[0]), -1)] + rows))[::-1]
      current -= len(rows)

   digits = len(str(n * n))
   for row in rows:
      print" ".join(str(cell).zfill(digits) for cell in row)

spiral(5)

3

PHP, 272 caractères avec commentaire

Version récursive basée sur Func - plus intéressante pour moi car elle exprime mieux l'intention. Il fonctionne également pour une largeur et une hauteur distinctes.

<?php

$n = $argv[1];

for($y = 0; $y<$n; $y++){
    for($x = 0; $x<$n; $x++)
        printf("%02d ", f($n, $n, $x, $y));

    echo "\n";
}

function f($w, $h, $x, $y){
    return ($y)
        ?$w + f($h - 1, $w, $y - 1, $w - $x - 1) //strip-off first row and "rotate"
        :$x;
}

Production:

C:\www>php -f golfed_spiral.php 8
00 01 02 03 04 05 06 07
27 28 29 30 31 32 33 08
26 47 48 49 50 51 34 09
25 46 59 60 61 52 35 10
24 45 58 63 62 53 36 11
23 44 57 56 55 54 37 12
22 43 42 41 40 39 38 13
21 20 19 18 17 16 15 14

2

C #, 380 ish golfé

Je n'ai pas pris la peine de coller dans la version golfée car j'étais assez confiant que cela n'allait pas battre de records. Mais je voulais lui donner une idée en y réfléchissant un peu différemment. Plutôt que d'écrire chaque ligne ou position au fur et à mesure que j'y arrive, je déplace le curseur en position, j'écris le numéro du centre de départ et je spirale à partir de là (ce qui illustre un modèle intéressant de positions à déplacer par changement de direction) ).

Il y a une bonne quantité d'espace de caractères gaspillé pour que le tampon de la console accepte les valeurs plus grandes et calcule également la position du coin supérieur gauche (qui, j'en suis sûr, peut être améliorée).

En tout cas, ce fut un exercice intéressant.

    static void Main(string[] p)
    {
        int squareSize = 4;
        Console.BufferHeight = 300;
        Console.BufferWidth = 300;

        int maxTravel = 0;
        int currentTravel = 0;
        int travelCounter = 0;
        var a = squareSize % 2 == 0;
        int direction = a ? 2 : 0;
        int pad = squareSize * squareSize;
        int padLength = (pad + "").Length;

        int y = a ? (squareSize / 2) - 1 : (squareSize - 1) / 2;
        int x = a ? y + 1 : y;
        x = x + (x * padLength);

        for (int i = pad; i > 0; i--)
        {
            Console.SetCursorPosition(x, y);
            Console.Write((i + "").PadLeft(padLength, '0') + " ");

            switch (direction)
            {
                case 0:
                    y--;
                    break;

                case 1:
                    x += padLength + 1;
                    break;

                case 2:
                    y++;
                    break;

                case 3:
                    x -= padLength + 1;
                    break;
            }

            if (++currentTravel > maxTravel)
            {
                currentTravel = 0;
                direction = ++direction % 4;

                if (++travelCounter == 2)
                {
                    travelCounter = 0;
                    maxTravel++;
                }
            }

        }
    }

2

Rubis

Ce n'est pas une solution golfable particulièrement bonne, mais elle pourrait présenter un intérêt algorithmique.

J'ai toujours été fasciné par un problème similaire , à savoir trouver le chemin en spirale dans le sens horaire à travers une matrice NxM. Une façon vraiment intuitive de résoudre ce problème est de continuer à tourner la matrice dans le sens antihoraire et de la décoller comme une orange. J'utilise une méthode similaire - mais pas aussi élégante - pour faire l'inverse:

def spiral_matrix(n)
  matrix = Array.new(n) { Array.new(n) }
  path = [*1..n*n]
  padding = (n*n).to_s.size
  layer = 0
  until path.empty?
    matrix[layer].map! { |l| l || path.shift }
    matrix = matrix.transpose.reverse
    layer += 1 unless matrix[layer].include?(nil)
  end
  matrix = matrix.transpose.reverse until matrix[0][0] == 1
  matrix.transpose.each do |row|
    row.each do |l|
      print "%0#{padding}d" % l, ' '
    end
    puts
  end
end

1

Raquette

Je voulais juste l'essayer avec une solution utilisant près de 0 mémoire. Pas de tableau, rien du tout. La valeur peut être générée à tout moment pour n'importe quelle position. Nous pourrions demander une spirale de n'importe quelle taille (si ce qui reçoit le flux de sortie peut le gérer). Dans l'espoir que quelqu'un ait besoin de gigantesques spirales.

Voici le code

; number of chars required to write x in base 10
; defined for x > 0
(define log10
  (λ (x)
    (inexact->exact
     (+ 1 (floor (/ (log x) (log 10)))))))

; tells the square number
; works for squares of both even and odd sizes
; outer square # = 0
(define square#
  (λ (x y size) ; x and y begin at 0
    (min x y
         (- size 1 x)
         (- size 1 y))))

; tells the number of values in a square
(define square-val-qty
  (λ (sqr# size) ; size is the whole spiral size
    (let ((res (* 4 (- size (* 2 sqr#) 1))))
      (cond
        ((zero? res) 1)
        (else res)))))


; at which value a square starts
; works for odd/even spirals
(define square-1st-val
  (λ (sqr# size)
    (+ (* 4 sqr# (- size sqr#)) 1)))

; square size from spiral size
(define square-side
  (λ (sqr# size)
    (- size (* 2 sqr#))))

(define 1+
  (λ (n)
    (+ n 1)))

(define 1-
  (λ (n)
    (- n 1)))

; calculates the position on the square (from 0)
(define position-on-square
  (λ (x y size)
    (let* ((sqr#     (square# x y size))
           (sqr-x    (- x sqr#))
           (sqr-y    (- y sqr#))
           (sqr-side (square-side sqr# size)))
      (cond
        ((and (zero? sqr-x) (< sqr-y (1- sqr-side))) ; left part
         sqr-y)
        ((and (eq? sqr-y (1- sqr-side)) (< sqr-x (1- sqr-side))) ; bottom
         (+ (1- sqr-side) sqr-x))
        ((and (not (eq? sqr-y 0)) (eq? sqr-x (1- sqr-side))) ; right
         (+ (* 2 (1- sqr-side)) (- sqr-side sqr-y 1)))
        (else ; top
         (+ (* 3 (1- sqr-side)) (- sqr-side sqr-x 1)))))))

; returns the spiral value at the given position
(define spiral-value
  (λ (x y size)
    (+ (square-1st-val (square# x y size) size)
       (position-on-square x y size))))

; pads a string with char
(define left-pad
  (λ (str char width)
    (cond
      ((< (string-length str) width)
       (left-pad (string-append (string char) str) char width))
      (else
       str))))

; draws a spiral!
(define draw-spiral
  (λ (size)
    (let ((x 0)
          (y 0)
          (width (log10 (* size size))))
      (letrec ((draw
                (λ ()
                  (printf "~a " (left-pad (number->string (spiral-value x y size)) #\0 width))
                  (cond
                    ((and (eq? x (1- size)) (eq? y (1- size)))
                     (printf "~n~n"))
                    ((eq? x (1- size))
                     (set! x 0)
                     (set! y (1+ y))
                     (printf "~n")
                     (draw))
                    (else
                     (set! x (1+ x))
                     (draw))))))
        (draw)))))

Tester avec ceci

(draw-spiral 1)
(draw-spiral 2)
(draw-spiral 3)
(draw-spiral 4)
(draw-spiral 5)
(draw-spiral 15)
(draw-spiral 16)

Résultats en sortie

1 

1 4 
2 3 

1 8 7 
2 9 6 
3 4 5 

01 12 11 10 
02 13 16 09 
03 14 15 08 
04 05 06 07 

01 16 15 14 13 
02 17 24 23 12 
03 18 25 22 11 
04 19 20 21 10 
05 06 07 08 09 

001 056 055 054 053 052 051 050 049 048 047 046 045 044 043 
002 057 104 103 102 101 100 099 098 097 096 095 094 093 042 
003 058 105 144 143 142 141 140 139 138 137 136 135 092 041 
004 059 106 145 176 175 174 173 172 171 170 169 134 091 040 
005 060 107 146 177 200 199 198 197 196 195 168 133 090 039 
006 061 108 147 178 201 216 215 214 213 194 167 132 089 038 
007 062 109 148 179 202 217 224 223 212 193 166 131 088 037 
008 063 110 149 180 203 218 225 222 211 192 165 130 087 036 
009 064 111 150 181 204 219 220 221 210 191 164 129 086 035 
010 065 112 151 182 205 206 207 208 209 190 163 128 085 034 
011 066 113 152 183 184 185 186 187 188 189 162 127 084 033 
012 067 114 153 154 155 156 157 158 159 160 161 126 083 032 
013 068 115 116 117 118 119 120 121 122 123 124 125 082 031 
014 069 070 071 072 073 074 075 076 077 078 079 080 081 030 
015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 

001 060 059 058 057 056 055 054 053 052 051 050 049 048 047 046 
002 061 112 111 110 109 108 107 106 105 104 103 102 101 100 045 
003 062 113 156 155 154 153 152 151 150 149 148 147 146 099 044 
004 063 114 157 192 191 190 189 188 187 186 185 184 145 098 043 
005 064 115 158 193 220 219 218 217 216 215 214 183 144 097 042 
006 065 116 159 194 221 240 239 238 237 236 213 182 143 096 041 
007 066 117 160 195 222 241 252 251 250 235 212 181 142 095 040 
008 067 118 161 196 223 242 253 256 249 234 211 180 141 094 039 
009 068 119 162 197 224 243 254 255 248 233 210 179 140 093 038 
010 069 120 163 198 225 244 245 246 247 232 209 178 139 092 037 
011 070 121 164 199 226 227 228 229 230 231 208 177 138 091 036 
012 071 122 165 200 201 202 203 204 205 206 207 176 137 090 035 
013 072 123 166 167 168 169 170 171 172 173 174 175 136 089 034 
014 073 124 125 126 127 128 129 130 131 132 133 134 135 088 033 
015 074 075 076 077 078 079 080 081 082 083 084 085 086 087 032 
016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 

Assez intensif en CPU par rapport aux matrices précalculées si vous avez besoin de toute la spirale, mais cela pourrait être utile. Qui sait! Par exemple:

(spiral-value 1234567 7654321 234567890)  ->  1152262488724319

Je n'ai pas joué au golf ... C'est assez petit malgré l'apparence. J'ai utilisé des noms longs et des commentaires.


1

Python 2 , 800 octets

from collections import namedtuple
Crd = namedtuple('Crd',['row','col','val'])
C1 = Crd(1,1,1)
def add(c1, c2):
    return Crd(c1.row + c2.row, c1.col + c2.col, c1.val + c2.val)
def deltas(l):
    for i in xrange(1,l): yield Crd(0,1,1)
    for i in xrange(1,l): yield Crd(1,0,1)
    for i in xrange(1,l): yield Crd(0,-1,1)
    for i in xrange(1,l-1): yield Crd(-1,0,1)
def ring(c, l):
    yield c
    for d in deltas(l):
        c = add(c, d)
        yield c
def spiral(n):
    cur = C1
    while n > 0:
        for c in ring(cur, n):
            yield c
            cur = c
        cur = add(cur, Crd(0,1,1))
        n -= 2
n    = input()
fmt  = '%' + str(len(str(long(n*n)))) + 'd'
crds = sorted(list(spiral(n)))
for r in xrange(1,n+1):
    print ' '.join([fmt % c.val for c in crds if c.row == r])

Essayez-le en ligne!

Il y a quelques années, une de mes amies a posé cette question lors d'une interview. Ils m'en ont parlé lors du dîner de Thanksgiving de notre famille, donc je pense que c'est le "problème de Thanksgiving".


1

PHP, 172 171 + 1 octets, 24 opérations

crée un tableau parcourant les index à travers une spirale; imprime ensuite le résultat.

// 1) input squared -> 2) string length -> 3) $e = length of maximum number
for($e=strlen($argn**2);
    // 4) decrement input (line length) every second iteration; 5) loop while input>0
    $argn-=$i%2;
    // 24) post-increment iteration counter $i
    $i++)
    // 6,7,8) loop through current line
    for($p=$argn;$p--;)$r
        // 9) $i=$i modulo 4; 10,11) (1-$i)%2 == [1,0,-1,0][$i] -> 12) increment/decrement $y coordinate3
        [$y+=(1-$i%=4)%2]
        // 13,14) (2-$i)%2 == [0,1,0,-1][$i] -> 15) increment/decrement $x coordinate
        [$x+=(2-$i)%2]
        // 16) print formatted to string; 17) assign to field [$y,$x] in $r
        =sprintf("%0{$e}d ",++$n);
// 18) pre-increment row counter $z; 19) loop while row exists
for(;$r[++$z];
    // 21) join row; 22) append newline; 23) print
    print join($r[$z])."\n")
    // 20) sort row by indexes
    ksort($r[$z]);

Exécuter en tant que pipe avec -nRou essayer en ligne .

Ajoutez une affectation pour économiser cinq octets: remplacez la boucle finale par

for(;$s=$r[++$z];print join($s)."\n")ksort($s);

0

Exemple de code: cela fonctionne pour 4x5 mais à défaut 3x5

while (k <m && l <n) {/ * Imprime la première ligne à partir des lignes restantes * / for (i = l; i <n; ++ i) {printf ("% d", a [k] [ je]); } k ++;

    /* Print the last column from the remaining columns */
    for (i = k; i < m; ++i)
    {
        printf("%d ", a[i][n-1]);
    }
    n--;

    /* Print the last row from the remaining rows */
    if ( k < m)
    {
        for (i = n-1; i >= l; --i)
        {
            printf("%d ", a[m-1][i]);
        }
        m--;
    }

    /* Print the first column from the remaining columns */
    if (l < n)
    {
        for (i = m-1; i >= k; --i)
        {
            printf("%d ", a[i][l]);
        }
        l++;    
    }        
}

2
Bienvenue chez PPCG! C'est le golf de code. Veuillez faire un effort pour résoudre le problème en un minimum de caractères. En particulier, vous pouvez utiliser des noms de variable à un seul caractère, supprimer les espaces blancs et les commentaires inutiles. Veuillez également inclure le nombre d'octets de votre soumission après l'avoir réduit. Vous pouvez toujours conserver la version lisible en plus de la version golfée.
Martin Ender
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.