:1:2222:"w":"y":["r":"b":"o":"g"]{h""|[L:I:N:A:B:[C:D:E:F]]hhM("^",(NhI,CwX,EY,B:D:A:FZ;AwX,BY,[C:D:E:F]Z),NhJ,(I1,2313O;I2,(Nh2,N$($(O;Nh1,2222O;Nbh1,3223O;3322O);3322N,2332O;3223N,2233O;2233N,3132O;2332N,3231O);IJ,AX,BY,(M"<",[C:D:E:F]$(Z,N$(O;M">",[C:D:E:F]$)Z,N$)O)),Lb:J:O:X:Y:Z:1&}
Attend une chaîne contenant les déplacements en tant qu'entrée, et aucune sortie, par exemple brachylog_main("^^>^^<^^^",_)., écrira wrrgggydans STDOUT.
Explication
§ There are 3 types of tiles we can be on: centers (noted 1), edges (2) and corners (3)
§ When we are on a tile, we can denote adjacent tiles in order: front, left, back, right
§ Similarly, we can denote the adjacent colors depending on the current one of the face
§
§ We start on the center (1) of face white ("w"). The adjacent tiles are 4 edges (2222)
§ The adjacent colors of white are red, blue, orange and green ("r":"b":"o":"g")
§ Yellow is opposite of white ("y")
§ We pass those initial conditions in an array, with the sequence of moves as first
§ element, as input to subpredicate 1
:1:2222:"w":"y":["r":"b":"o":"g"]{...}
§ SUB-PREDICATE 1
h""  § If the sequence of moves is empty, terminate the recursion
|    § Else...
§ Here are the variables' names of the input (which correspond to what's described in
§ the first few paragraphs)
[L:I:N:A:B:[C:D:E:F]]
§ If the move is "^"...
hhM("^",
   § The only way we change from one face to another is if the tile we end up on is of the
   § same type as the tile we started from
   (NhI,      § If this is the case
    CwX,      § Then write the color of the face we're facing, this face will now be the
              § current color
    EY,       § The third color in the list is now the opposite color
    B:D:A:FZ  § The opposite color is now the one we face, the color behind us (the third
              § in the list) is the one we were on, and the other 2 don't change
    § If the tiles are not the same type, then we don't change color
    ; 
    AwX,         § Write the current color, this will remain the color
    BY,          § Opposite color stays the same
    [C:D:E:F]Z), § Other colors stay in the same order since we moved forward
    NhJ,              § The new tile type is the one we were facing
       (I1,2313O;     § If we were on the center, then the adjacent tiles are 2313
       I2,            § Else if we were on an edge
         (Nh2,N$($(O; § then if we were facing an edge (changed face), then the new types
                      § of tiles are a double circular permutation of the previous types
         Nh1,2222O;   § Else if we were facing a center, then the new tiles are 2222
         Nbh1,3223O;  § Else (corners) if the tile to our left is the center, then 3223
         3322O)       § Else 3322
       ;              § Else if we were on a corner
       3322N,2332O;   § then one of those 4 possibilities applies
       3223N,2233O;
       2233N,3132O;
       2332N,3231O)
§ Else if the move is NOT "^"
;
IJ,AX,BY,         § We stay on the same type of tile, same color, same opposite color
(M"<",            § if the move is "turn left"
    [C:D:E:F]$(Z, § Then we circular permute the adjacent colors to the left
    N$(O          § we also circular permute the adjacent tiles to the left
;M">",            § Else if the move is "turn right"
    [C:D:E:F]$)Z, § Then we do the same but with right circular permutations
    N$)O)
),
Lb:J:O:X:Y:Z:1&   § Recursively call sub-predicate 1 with the new input, and the next move
Code SWI-Prolog équivalent
Si vous ne voulez pas vous occuper du compilateur Brachylog, vous pouvez exécuter cette solution dans SWI-Prolog en utilisant le code suivant (c'est ce qui est généré par le compilateur Brachylog):
:- style_check(-singleton).
:- use_module(library(clpfd)).
brachylog_main(Input,Output) :-
    1=1,
    brachylog_subpred_1([Input,1,2222,"w","y",["r","b","o","g"]],V0).
brachylog_subpred_1(Input,Output) :-
    1=1,
    brachylog_head(Input, "").
brachylog_subpred_1(Input,Output) :-
    1=1,
    [L,I,N,A,B,[C,D,E,F]] = Input,
    brachylog_head([L,I,N,A,B,[C,D,E,F]], V0),
    brachylog_head(V0, M),
    ( 1=1,
    "^" = M,
    ( 1=1,
    brachylog_head(N, I),
    brachylog_write(C, X),
    Y = E,
    Z = [B,D,A,F]
    ;
    1=1,
    brachylog_write(A, X),
    Y = B,
    Z = [C,D,E,F]
    ),
    brachylog_head(N, J),
    ( 1=1,
    I = 1,
    O = 2313
    ;
    1=1,
    I = 2,
    ( 1=1,
    brachylog_head(N, 2),
    brachylog_math_circular_permutation_left(N, V1),
    brachylog_math_circular_permutation_left(V1, O)
    ;
    1=1,
    brachylog_head(N, 1),
    O = 2222
    ;
    1=1,
    brachylog_behead(N, V2),
    brachylog_head(V2, 1),
    O = 3223
    ;
    1=1,
    O = 3322
    )
    ;
    1=1,
    N = 3322,
    O = 2332
    ;
    1=1,
    N = 3223,
    O = 2233
    ;
    1=1,
    N = 2233,
    O = 3132
    ;
    1=1,
    N = 2332,
    O = 3231
    )
    ;
    1=1,
    J = I,
    X = A,
    Y = B,
    ( 1=1,
    "<" = M,
    brachylog_math_circular_permutation_left([C,D,E,F], Z),
    brachylog_math_circular_permutation_left(N, O)
    ;
    1=1,
    ">" = M,
    brachylog_math_circular_permutation_right([C,D,E,F], Z),
    brachylog_math_circular_permutation_right(N, O)
    )
    ),
    brachylog_behead(L, V3),
    brachylog_call_predicate([V3,J,O,X,Y,Z,1], V4).
brachylog_behead(X,Y) :-
    string(X),!,
    sub_string(X, 1, _, 0, Y)
    ;
    number(X),!,
    number_codes(X,[_|T]),
    catch(number_codes(Y,T),_,Y=[])
    ;
    atom(X),!,
    atom_codes(X,[_|T]),
    atom_codes(Y,T)
    ;
    X = [_|Y].
brachylog_math_circular_permutation_left(X,Y) :-
    string(X),!,
    string_codes(X,C),
    C = [H|T],
    append(T,[H],D),
    string_codes(Y,D)
    ;
    number(X),!,
    number_codes(X,C),
    C = [H|T],
    append(T,[H],D),
    number_codes(Y,D)
    ;
    atom(X),!,
    atom_codes(X,C),
    C = [H|T],
    append(T,[H],D),
    atom_codes(Y,D)
    ;
    X = [H|T],!,
    append(T,[H],Y).
brachylog_math_circular_permutation_right(X,Y) :-
    string(X),!,
    string_codes(X,C),
    append(T,[H],C),
    D = [H|T],
    string_codes(Y,D)
    ;
    number(X),!,
    number_codes(X,C),
    append(T,[H],C),
    D = [H|T],
    number_codes(Y,D)
    ;
    atom(X),!,
    atom_codes(X,C),
    append(T,[H],C),
    D = [H|T],
    atom_codes(Y,D)
    ;
    append(T,[H],X),
    Y = [H|T].
brachylog_call_predicate(X,Y) :-
    reverse(X,R),
    R = [N|RArgs],
    number(N),
    reverse(RArgs, Args),
    (
    N = 0,!,
    Name = brachylog_main
    ;
    atom_concat(brachylog_subpred_,N,Name)
    ),
    (
    Args = [UniqueArg],!,
    call(Name,UniqueArg,Y)
    ;
    call(Name,Args,Y)
    ).
brachylog_write(X,Y) :-
    X = [List,Format],
    is_list(List),
    string(Format),!,
    format(Format,List),
    flush_output,
    Y = List
    ;
    write(X),
    flush_output,
    Y = X.
brachylog_head(X,Y) :-
    string(X),!,
    sub_string(X, 0, 1, _, Y)
    ;
    number(X),!,
    number_codes(X,[A|_]),
    number_codes(Y,[A])
    ;
    atom(X),!,
    atom_codes(X,[A|_]),
    atom_codes(Y,[A])
    ;
    X = [Y|_].