Python 3, 7306 1995 octets
Cette solution fonctionne en complexité log (n) (pour autant que je sache).
def i(s,t):
for n in s[::-1]:t=t.replace(*n)
return [[]]*78+[list(bytearray.fromhex(a))for a in t.split(",")]
def f(n):
g,h=lambda c,n:c+[[[2],[3,7,78,91]][n[len(c)]%2]+[i*2for i in c[-1]]],lambda n:[]if n<78 else h((n-[2,179][n%2])//2)+[n]
v=h(n);c=[i([['g',',03040'],['h',',,0306080'],['i',',020'],['j','b0c1'],['k','21'],['l','60'],['m','30'],['n','141'],['o','k24'],['p',',g'],['q','618'],['r','0c0'],['s','1e'],['t',',0ml'],['u','283c'],['v','e0f1'],['w','2a38'],['x','80'],['y','a0'],['z','01'],['A','50'],['B','24'],['C','i40'],['D','plb1'],['E','gl'],['F','48'],['G','bre1'],['H','28'],['I','6k'],['J','416s'],['K',',040Al'],['L','90'],['M','2a'],['N','54'],['O','k6o'],['P','3c'],['Q','il'],['R','18'],['S','px'],['T','im'],['U','70'],['V','b1'],['W','23'],['X','pj'],['Y','hj'],['Z','0n']],'020lxycHTaRHCyf1517CyfneC91k51cCLdneQU912MCyf0dBiALyf2dClfPEyfneT9s2dELdneEjIgmLydHg5rd14BKLardsE3n8sQ9rd1517Q9rdneplmdRBgUmcRMC5sPEyf102bgA6sPE91z2miAj41IQmc0dRBQUen7spl31z82bT9RFT3wE7neMgmyf0dRBgUmaHMELc1b36EUdBMQLyfs2d,C710M2bgLardRHT3BFQ9rf0dPQ7rdBMQm9Rs2d,0mAl9100d142bE710M2bQmc0fRPtxarfn8sEc1k4sBTfnePExcwtxarf1k8BExcuT3kkT91663C51964,0mAl71k4BMELe12NTcRwQjOT820ltmarf1z8mExeRNCqBFtmyjIHKLa100ds2bQU91bM36garf1k4sBTcRBFgxarfwE91keB2dtUxcn8sME9nbs36gm9rduC5R78,0mAUyf0d14BME91kbB36QLc12AB2dgyjqkHEUeMNT9157eQU9RMFT8s78C8neuixLc1zk4AtUxc1z8Mmt8re0fn8sWhLyc1bH36pl8neu,Kxycsw,iAxc1420l,K8ren8NS9n81bs36hc0vz8WmYzqkmhyv2WBHhyVOHXkJoSjIwSjIuSvz4WASVZIAXZ6skmSj6oFXzOmplvcsW46D61csk46plv8WBFDqoF,tarvk8WBH,tyjkqoHhGqkN,tmvZ8sWmhVZqskmpc0vZ8WAXZqkAplbnImASbn6skwSbn6skuSVOwSVOupGONSbn6soFpyVkJk5aSj6sk78YJkuDkIP5aYOuhvzk4WBAhVzk416oA,tyjkJ265a,,0mxyjk41q53sYzIHmPXkqowXkqouhyVqoHFYz6omFhb0e1zqkmNSyVIP78YJ20klpyVOHwYk620olpc0vz8WBmFXzqomFpG61ckH38PhyjIP78Yz620kmlDkImLDzINUhGIuNDzIA78hb0e1ZIANYkqk366chG6oFNXkJkP5ahVZ6somFSb0e1620kNlhVk41qomADzIFLXkqso78pGqoFNXzkImP5a,tyjk620oHlhG620kNlXzqskm78,tjZqskHmPYqouFD6sku78YzqkNU,tjZqsomF')[v[0]]]
for o in range(len(v)-1):c=g(c,v)
return c[-1]
Vous pouvez tester qui f(2**32 - 1)
s'exécute presque instantanément
J'ai utilisé cet article sur une méthode de calcul. Avec cette méthode, il y a une énorme quantité de données pour les valeurs prédéterminées pour n de 78 à 334 sans les nombres pairs après 168. Je voulais transformer ces données en quelque chose de petit et je ne connaissais pas de bons algorithmes de compression, donc j'ai fait le mien.
La façon dont je l'ai compressé était d'avoir une liste de règles de remplacement de chaîne. J'ai créé une méthode qui a trouvé la règle de remplacement de chaîne qui réduirait le plus de contenu en tenant compte de la définition de la règle. J'ai ensuite appliqué récursivement ceci jusqu'à ce que je ne puisse plus créer de règles (j'ai utilisé les caractères gz et AZ). La chaîne que j'ai créée pour remplacer était une liste séparée par des virgules des valeurs hexadécimales pour chacun des nombres. Rétrospectivement, les convertir en leurs valeurs hexadécimales n'a peut-être pas été le choix le plus sage, il serait probablement plus court de les laisser en décimal, car avoir hex ne sauverait que pour les nombres à 3 chiffres mais ajouterait un 0 pour les nombres à un chiffre.
La ligne où je mets c, vous pouvez voir la liste des règles de remplacement et le texte sur lequel il s'exécute. Les règles doivent également être appliquées en sens inverse, car certaines règles incluent des caractères créés à partir d'autres règles.
Il y a aussi de nombreux endroits dans ce code où je pourrais probablement réduire la syntaxe, comme transformer la liste des listes en une seule liste puis utiliser une méthode différente pour accéder aux règles pour remplacer le texte par