introduction
Dans ce défi, votre tâche consiste à décider si une séquence donnée de nombres peut être séparée en deux sous-séquences, dont l'une augmente et l'autre diminue. À titre d'exemple, considérons la séquence 8 3 5 5 4 12 3
. Il peut être divisé en deux sous-séquences comme suit:
3 5 5 12
8 4 3
La sous-séquence de la première ligne augmente et celle de la deuxième ligne diminue. En outre, vous devez effectuer cette tâche efficacement.
Contribution
Votre entrée est une liste non vide L
d'entiers compris entre 0 et 99999 inclus. Il est donné au format natif de votre langue, ou simplement délimité par des espaces.
Production
Votre sortie est une valeur vraie si elle L
peut être divisée en une sous-séquence croissante et une sous-séquence décroissante, et une valeur fausse sinon. Les sous-séquences n'ont pas besoin d'être strictement croissantes ou décroissantes, et l'une ou l'autre peut être vide.
Règles et bonus
Vous pouvez écrire un programme complet ou une fonction. Le nombre d'octets le plus bas l'emporte et les failles standard sont interdites. De plus, le forçage brutal est interdit dans ce challenge: votre programme doit s'exécuter en temps polynomial dans la longueur de l'entrée .
Vous n'êtes pas obligé de retourner réellement les deux sous-séquences, mais il y a un bonus de -20% pour le faire. Pour rendre le bonus plus facile à réclamer dans des langues tapées statiquement, il est acceptable de renvoyer une paire de listes vides pour les instances de falsification.
Cas de test
Donné dans le format input -> None
des entrées fausses et input -> inc dec
des entrées véridiques. Une seule paire possible de sous-séquences est donnée ici; il peut y en avoir plus.
[4,9,2,8,3,7,4,6,5] -> None
[0,99999,23423,5252,27658,8671,43245,53900,22339] -> None
[10,20,30,20,32,40,31,40,50] -> None
[49,844,177,974,654,203,65,493,844,767,304,353,415,425,857,207,871,823,768,110,400,710,35,37,88,587,254,680,454,240,316,47,964,953,345,644,582,704,373,36,114,224,45,354,172,671,977,85,127,341,268,506,455,6,677,438,690,309,270,567,11,16,725,38,700,611,194,246,34,677,50,660,135,233,462,777,48,709,799,929,600,297,98,39,750,606,859,46,839,51,601,499,176,610,388,358,790,948,583,39] -> None
[0,1,2,3,4] -> [0,1,2,3,4] []
[4,3,2,1,0] -> [] [4,3,2,1,0]
[1,9,2,8,3,7,4,6,5] -> [1,2,3,4,6] [9,8,7,5]
[71414,19876,23423,54252,27658,48671,43245,53900,22339] -> [19876,23423,27658,48671,53900] [71414,54252,43245,22339]
[10,20,30,20,30,40,30,40,50] -> [10,20,20,30,40,40,50] [30,30]
[0,3,7,13,65,87,112,43,22,1] -> [0,3,7,13,65,87,112] [43,22,1]
[7,4,4,7,4,7,7,4,7,4,4,4,7,7] -> [7,7,7,7,7,7,7] [4,4,4,4,4,4,4]
[7,997,991,957,956,952,7,8,21,924,21,923,22,38,42,44,920,49,58,67,71,83,84,85,917,89,907,896,878,878,90,861,115,860,125,128,140,148,858,155,160,836,164,182,826,191,824,805,195,792,205,782,206,210,769,213,756,748,214,745,724,701,234,241,693,268,685,293,679,297,334,671,336,669,341,652,356,648,362,364,370,375,386,630,622,388,389,618,398,408,468,615,470,533,611,539,544,609,586,582,572,565,547,602,536,619,624,528,512,631,640,649,669,671,677,505,678,723,743,489,489,473,454,757,446,445,758,759,764,445,431,770,429,426,418,409,790,383,379,366,363,791,358,795,809,827,835,356,353,841,844,333,867,323,317,879,311,881,309,896,282,281,897,263,904,237,236,226,202,195,914,186,177,917,920,157,926,936,154,138,943,131,945,100,98,947,957,964,95,973,989,57,43,32,21,16,13,11,8,0] -> [7,7,8,21,21,22,38,42,44,49,58,67,71,83,84,85,89,90,115,125,128,140,148,155,160,164,182,191,195,205,206,210,213,214,234,241,268,293,297,334,336,341,356,362,364,370,375,386,388,389,398,408,468,470,533,539,544,586,602,619,624,631,640,649,669,671,677,678,723,743,757,758,759,764,770,790,791,795,809,827,835,841,844,867,879,881,896,897,904,914,917,920,926,936,943,945,947,957,964,973,989] [997,991,957,956,952,924,923,920,917,907,896,878,878,861,860,858,836,826,824,805,792,782,769,756,748,745,724,701,693,685,679,671,669,652,648,630,622,618,615,611,609,582,572,565,547,536,528,512,505,489,489,473,454,446,445,445,431,429,426,418,409,383,379,366,363,358,356,353,333,323,317,311,309,282,281,263,237,236,226,202,195,186,177,157,154,138,131,100,98,95,57,43,32,21,16,13,11,8,0]