Inspiré par cette question sur Math.SE .
En commençant par, 1
vous pouvez effectuer plusieurs fois l'une des deux opérations suivantes:
Double le nombre.
ou
Réorganisez ses chiffres comme vous le souhaitez, sauf qu'il ne doit pas y avoir de zéros au début.
En prenant un exemple tiré de l'article Math.SE lié, nous pouvons atteindre 1000
via les étapes suivantes:
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 125, 250, 500, 1000
Quels numéros pouvez-vous atteindre avec ce processus et quelle est la solution la plus courte?
Le défi
Avec un nombre entier positif N
, déterminez N
, si possible , la séquence d’entiers la plus courte possible. S'il existe plusieurs solutions optimales, indiquez l'une d'entre elles. Si aucune séquence de ce type n'existe, vous devez générer une liste vide.
La séquence peut être dans une chaîne ou un format de liste pratique et non ambigu.
Vous pouvez écrire un programme ou une fonction en prenant l’entrée via STDIN (ou l’alternative la plus proche), un argument de ligne de commande ou une argumentation de fonction et en générant le résultat via STDOUT (ou l’alternative la plus proche), une valeur de retour de fonction ou un paramètre de fonction (out).
C'est le code de golf, donc la réponse la plus courte (en octets) gagne.
Cas de test
Voici une liste de tous les nombres joignables jusqu’à 256. La première colonne est le nombre (votre entrée), la deuxième colonne indique le nombre optimal d’étapes (que vous pouvez utiliser pour vérifier la validité de votre solution) et la troisième. colonne est une séquence optimale pour y arriver:
1 1 {1}
2 2 {1,2}
4 3 {1,2,4}
8 4 {1,2,4,8}
16 5 {1,2,4,8,16}
23 7 {1,2,4,8,16,32,23}
29 10 {1,2,4,8,16,32,23,46,92,29}
32 6 {1,2,4,8,16,32}
46 8 {1,2,4,8,16,32,23,46}
58 11 {1,2,4,8,16,32,23,46,92,29,58}
61 6 {1,2,4,8,16,61}
64 7 {1,2,4,8,16,32,64}
85 12 {1,2,4,8,16,32,23,46,92,29,58,85}
92 9 {1,2,4,8,16,32,23,46,92}
104 15 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104}
106 14 {1,2,4,8,16,32,64,128,256,265,530,305,610,106}
107 14 {1,2,4,8,16,32,23,46,92,29,58,85,170,107}
109 18 {1,2,4,8,16,32,23,46,92,184,368,386,772,277,554,455,910,109}
116 12 {1,2,4,8,16,32,23,46,92,29,58,116}
122 7 {1,2,4,8,16,61,122}
124 16 {1,2,4,8,16,32,23,46,92,29,58,85,170,107,214,124}
125 11 {1,2,4,8,16,32,64,128,256,512,125}
128 8 {1,2,4,8,16,32,64,128}
136 18 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158,316,136}
140 15 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,140}
142 16 {1,2,4,8,16,32,23,46,92,29,58,85,170,107,214,142}
145 17 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,145}
146 18 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,146}
148 11 {1,2,4,8,16,32,23,46,92,184,148}
149 16 {1,2,4,8,16,32,64,128,182,364,728,287,574,457,914,149}
152 11 {1,2,4,8,16,32,64,128,256,512,152}
154 17 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,154}
158 16 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158}
160 14 {1,2,4,8,16,32,64,128,256,265,530,305,610,160}
161 13 {1,2,4,8,16,32,23,46,92,29,58,116,161}
163 18 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158,316,163}
164 18 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,164}
166 20 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,154,308,616,166}
167 17 {1,2,4,8,16,32,23,46,92,184,148,296,269,538,358,716,167}
169 23 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,461,922,229,458,916,169}
170 13 {1,2,4,8,16,32,23,46,92,29,58,85,170}
176 17 {1,2,4,8,16,32,23,46,92,184,148,296,269,538,358,716,176}
182 9 {1,2,4,8,16,32,64,128,182}
184 10 {1,2,4,8,16,32,23,46,92,184}
185 16 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,185}
188 23 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,185,370,740,470,940,409,818,188}
190 18 {1,2,4,8,16,32,23,46,92,184,368,386,772,277,554,455,910,190}
194 16 {1,2,4,8,16,32,64,128,182,364,728,287,574,457,914,194}
196 23 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,461,922,229,458,916,196}
203 16 {1,2,4,8,16,32,64,128,256,265,530,305,610,160,320,203}
205 13 {1,2,4,8,16,32,64,128,256,512,125,250,205}
208 16 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208}
209 19 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,145,290,209}
212 8 {1,2,4,8,16,61,122,212}
214 15 {1,2,4,8,16,32,23,46,92,29,58,85,170,107,214}
215 11 {1,2,4,8,16,32,64,128,256,512,215}
218 9 {1,2,4,8,16,32,64,128,218}
221 8 {1,2,4,8,16,61,122,221}
223 14 {1,2,4,8,16,32,23,46,92,29,58,116,232,223}
227 20 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158,316,361,722,227}
229 20 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,461,922,229}
230 16 {1,2,4,8,16,32,64,128,256,265,530,305,610,160,320,230}
232 13 {1,2,4,8,16,32,23,46,92,29,58,116,232}
233 22 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,154,308,616,166,332,233}
235 19 {1,2,4,8,16,32,23,46,92,184,148,296,269,538,358,716,176,352,235}
236 19 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158,316,632,236}
238 19 {1,2,4,8,16,32,64,128,256,512,125,250,205,410,104,208,416,832,238}
239 25 {1,2,4,8,16,32,23,46,92,184,368,736,376,752,257,514,154,308,616,166,332,233,466,932,239}
241 16 {1,2,4,8,16,32,23,46,92,29,58,85,170,107,214,241}
244 8 {1,2,4,8,16,61,122,244}
247 21 {1,2,4,8,16,32,23,46,92,184,148,296,592,259,518,158,316,632,362,724,247}
248 17 {1,2,4,8,16,32,23,46,92,29,58,85,170,107,214,124,248}
250 12 {1,2,4,8,16,32,64,128,256,512,125,250}
251 11 {1,2,4,8,16,32,64,128,256,512,251}
253 19 {1,2,4,8,16,32,23,46,92,184,148,296,269,538,358,716,176,352,253}
256 9 {1,2,4,8,16,32,64,128,256}
Si vous voulez encore plus de données de test, voici la même table jusqu’à 1 000 inclus .
Tout nombre n'apparaissant pas sur ces tables devrait donner une liste vide (à condition que le nombre soit dans la plage du tableau).