ASCII Dragon's Curve


26

introduction

La courbe du dragon est une courbe fractale qui apparaît notamment sur les pages de titre de section du roman de Jurassic Park.

Il peut très simplement être décrit comme un processus de pliage d'une bande de papier, comme expliqué dans l'article Wikipedia sur cette courbe.

Les premières itérations de la génération de cette courbe ressemblent à ceci (crédits à Wikipedia pour l'image):

entrez la description de l'image ici

Le défi

Écrivez un programme ou une fonction qui, étant donné un entier n en entrée, sort la n-ième itération de la courbe du dragon en tant qu'art ASCII en utilisant uniquement les symboles _et|

  • Vous devez sortir la figure en utilisant seulement |, _et des espaces. Vous ne pouvez pas sortir la courbe sous forme de tracé ou d'autre chose.
  • Vous pouvez prendre l'entrée comme argument de programme, dans STDIN ou comme paramètre de fonction.
  • Les entrées seront toujours un entier> = 0. Votre programme devrait fonctionner pour des valeurs raisonnables d'entrées, 12 étant la plus élevée dans les cas de test proposés.
  • Les premières itérations doivent ressembler à ceci

    • L'itération 0 est

      _
      
    • L'itération 1 est

      _|
      
    • L'itération 2 est

      |_ 
       _|
      
  • Une ligne de fuite à la fin est correcte. Aucun espace de fin n'est autorisé en plus de remplir la ligne jusqu'au caractère le plus à droite de la courbe

  • Pas de failles standard abusives comme d'habitude

Cas de test

  • Contribution 0

Sortie

_
  • Contribution 3

Sortie

   _   
|_| |_ 
     _|
  • Contribution 5

Sortie

     _   _   
    |_|_| |_ 
 _   _|    _|
|_|_|_       
  |_|_|      
    |_       
     _|      
  |_|        
  • Contribution 10

Sortie

           _       _                                           
         _|_|    _|_|                                          
        |_|_   _|_|_   _                                       
         _|_|_| |_| |_|_|                                      
   _    |_|_|_        |_                                       
 _|_|    _| |_|        _|                                      
|_|_   _|_          |_|                                        
 _|_|_|_|_|_                                                   
|_| |_|_|_|_|_                                                 
     _|_|_| |_|                                                
    |_| |_                                                     
         _|_   _   _           _   _           _   _           
   _    |_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_         
 _|_|    _|_|_|_|_| |_|    _   _|_| |_|    _   _|_| |_|        
|_|_   _|_|_|_|_|_        |_|_|_|_        |_|_|_|_             
 _|_|_|_|_|_|_|_|_|_   _   _|_|_|_|_   _   _|_|_|_|_   _   _   
|_| |_|_|_| |_|_|_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_ 
     _|_|    _|_|    _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|
    |_|     |_|     |_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_     
                         _|_|_|_|_|_|_|_|_|_|_| |_| |_|_|_|_   
                   _    |_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_ 
                 _|_|    _|_|_|_|_|_|_|_|_| |_|    _   _|_| |_|
                |_|_   _|_|_|_|_|_|_|_|_|_        |_|_|_|_     
                 _|_|_|_|_|_|_|_|_|_|_|_|_|_        |_| |_|    
                |_| |_|_|_| |_|_|_| |_|_|_|_|_                 
                     _|_|    _|_|    _|_|_| |_|                
                    |_|     |_|     |_| |_                     
                                         _|_   _   _           
                                   _    |_|_|_|_|_|_|_         
                                 _|_|    _|_|_|_|_| |_|        
                                |_|_   _|_|_|_|_|_             
                                 _|_|_|_|_|_|_|_|_|_   _   _   
                                |_| |_|_|_|_|_|_|_|_|_|_|_|_|_ 
                                     _|_|_|_|_|_|_|_|_|_|_| |_|
                                    |_| |_|_|_|_|_|_|_|_|_     
               _   _                     _|_|_| |_| |_|_|_|_   
              |_|_| |_             _    |_|_|_        |_|_|_|_ 
           _   _|    _|          _|_|    _| |_|    _   _|_| |_|
          |_|_|_                |_|_   _|_        |_|_|_|_     
            |_|_|                _|_|_|_|_|_        |_| |_|    
              |_   _       _    |_|_|_|_|_|_|_                 
           _   _|_|_|    _|_|    _|_|_|_|_| |_|                
          |_|_|_|_|_   _|_|_   _|_|_|_|_|_                     
            |_| |_| |_|_|_|_|_| |_| |_|_|_|_                   
                      |_|_|_|_        |_|_|_|_                 
                   _   _|_| |_|    _   _|_| |_|                
                  |_|_|_|_        |_|_|_|_                     
                    |_| |_|         |_| |_|                    
  • Contribution 12

Sortie

                                                               _   _           _   _                                           _   _           _   _                                           
                                                              |_|_|_|_        |_|_|_|_                                        |_|_|_|_        |_|_|_|_                                         
                                                           _   _|_| |_|    _   _|_| |_|                                    _   _|_| |_|    _   _|_| |_|                                        
                                                          |_|_|_|_        |_|_|_|_                                        |_|_|_|_        |_|_|_|_                                             
                                                            |_|_|_|_   _   _|_|_|_|_   _   _                                |_|_|_|_   _   _|_|_|_|_   _   _                                   
                                                              |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                 
                                                           _   _|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|                            _   _|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|                                
                                                          |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                     
                                               _   _        |_|_|_|_|_|_|_|_|_| |_| |_|_|_|_                   _   _        |_|_|_|_|_|_|_|_|_| |_| |_|_|_|_                                   
                                              |_|_|_|_        |_|_|_|_|_|_|_|_        |_|_|_|_                |_|_|_|_        |_|_|_|_|_|_|_|_        |_|_|_|_                                 
                                           _   _|_| |_|    _   _|_|_|_|_|_| |_|    _   _|_| |_|            _   _|_| |_|    _   _|_|_|_|_|_| |_|    _   _|_| |_|                                
                                          |_|_|_|_        |_|_|_|_|_|_|_|_        |_|_|_|_                |_|_|_|_        |_|_|_|_|_|_|_|_        |_|_|_|_                                     
                                            |_|_|_|_   _   _|_|_|_|_|_|_|_|_        |_| |_|                 |_|_|_|_   _   _|_|_|_|_|_|_|_|_        |_| |_|                                    
                                              |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                                 
                                           _   _|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|                            _   _|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|                                                
                                          |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_                                                     
                                            |_| |_| |_|_|_|_|_|_|_|_|_|_|_|_   _   _           _   _        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_   _   _           _   _           _   _           
                                                      |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_         
                                                   _   _|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|    _   _|_| |_|    _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|    _   _|_| |_|    _   _|_| |_|        
                                                  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_             
                                                    |_| |_| |_|_|_|_|_|_|_|_|_|_|_|_   _   _|_|_|_|_   _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_   _   _|_|_|_|_   _   _|_|_|_|_   _   _   
                                                              |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|_|_| |_|_|_|_|_|_|_|_|_|_|_| |_|_|_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_ 
                                                           _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|    _|_|    _|_|_|_|_|_|_|_|_|_|    _|_|    _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|
                                                          |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_    |_|     |_| |_|_|_|_|_|_|_|_    |_|     |_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_     
                                               _   _        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|_|_|_| |_| |_|_|_|_   
                                              |_|_|_|_        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|_           _    |_|_|_|_|_| |_|_           _    |_|_|_|_|_|_|_|_|_|_|_        |_|_|_|_ 
                                           _   _|_| |_|    _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|    _|_|        _|_|    _|_|_|_|    _|_|        _|_|    _|_|_|_|_|_|_|_|_| |_|    _   _|_| |_|
                                          |_|_|_|_        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_    |_|         |_|_   _|_|_|_|_    |_|         |_|_   _|_|_|_|_|_|_|_|_|_        |_|_|_|_     
                                            |_|_|_|_   _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|_|_|_|_|_|_        |_| |_|    
                                              |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_   _            |_| |_|_|_| |_|_                |_| |_|_|_| |_|_|_| |_|_|_|_|_                 
                                           _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|                _|_|    _|_|                    _|_|    _|_|    _|_|_| |_|                
                                          |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_   _            |_|     |_|                     |_|     |_|     |_| |_                     
                                            |_| |_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|                                                                _|_   _   _           
                                                      |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| |_|_                                                           _    |_|_|_|_|_|_|_         
                                                   _   _|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|    _|_|                                                        _|_|    _|_|_|_|_| |_|        
                                                  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_    |_|                                                         |_|_   _|_|_|_|_|_             
                                                    |_| |_| |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|                                                                _|_|_|_|_|_|_|_|_|_   _   _   
           _       _                                          |_|_|_|_|_|_| |_|_|_| |_|_|_|_|_|_   _                                                            |_| |_|_|_|_|_|_|_|_|_|_|_|_|_ 
         _|_|    _|_|                                      _   _|_|_|_|_|    _|_|    _|_|_|_|_|_|_|_|                                                                _|_|_|_|_|_|_|_|_|_|_| |_|
        |_|_   _|_|_   _                                  |_|_|_|_|_|_|_    |_|     |_| |_|_|_|_|_|_   _                                                            |_| |_|_|_|_|_|_|_|_|_     
         _|_|_| |_| |_|_|                      _   _        |_|_|_|_|_|_|                _|_|_|_|_|_|_|_|                                      _   _                     _|_|_| |_| |_|_|_|_   
   _    |_|_|_        |_                      |_|_|_|_        |_|_| |_|_           _    |_|_|_|_|_| |_|_                                      |_|_| |_             _    |_|_|_        |_|_|_|_ 
 _|_|    _| |_|        _|                  _   _|_| |_|    _   _|    _|_|        _|_|    _|_|_|_|    _|_|                                  _   _|    _|          _|_|    _| |_|    _   _|_| |_|
|_|_   _|_          |_|                   |_|_|_|_        |_|_|_    |_|         |_|_   _|_|_|_|_    |_|                                   |_|_|_                |_|_   _|_        |_|_|_|_     
 _|_|_|_|_|_                                |_|_|_|_   _   _|_|_|                _|_|_|_|_|_|_|_|                                           |_|_|                _|_|_|_|_|_        |_| |_|    
|_| |_|_|_|_|_                                |_|_|_|_|_|_|_|_|_   _            |_| |_|_|_| |_|_                                              |_   _       _    |_|_|_|_|_|_|_                 
     _|_|_| |_|                            _   _|_|_|_|_|_|_|_|_|_|_|                _|_|    _|_|                                          _   _|_|_|    _|_|    _|_|_|_|_| |_|                
    |_| |_                                |_|_|_|_|_|_|_|_|_|_|_|_|_   _            |_|     |_|                                           |_|_|_|_|_   _|_|_   _|_|_|_|_|_                     
         _|_   _   _           _   _        |_|_|_|_|_|_|_|_|_|_|_|_|_|_|                                                                   |_| |_| |_|_|_|_|_| |_| |_|_|_|_                   
   _    |_|_|_|_|_|_|_        |_|_|_|_        |_|_|_|_|_|_|_|_|_|_| |_|_                                                                              |_|_|_|_        |_|_|_|_                 
 _|_|    _|_|_|_|_| |_|    _   _|_| |_|    _   _|_|_|_|_|_|_|_|_|    _|_|                                                                          _   _|_| |_|    _   _|_| |_|                
|_|_   _|_|_|_|_|_        |_|_|_|_        |_|_|_|_|_|_|_|_|_|_|_    |_|                                                                           |_|_|_|_        |_|_|_|_                     
 _|_|_|_|_|_|_|_|_|_   _   _|_|_|_|_   _   _|_|_|_|_|_|_|_|_|_|_|                                                                                   |_| |_|         |_| |_|                    
|_| |_|_|_| |_|_|_| |_|_|_|_|_|_|_|_|_|_|_| |_|_|_| |_|_|_|_|_|_   _                                                                                                                           
     _|_|    _|_|    _|_|_|_|_|_|_|_|_|_|    _|_|    _|_|_|_|_|_|_|_|                                                                                                                          
    |_|     |_|     |_| |_|_|_|_|_|_|_|_    |_|     |_| |_|_|_|_|_|_   _                                                                                                                       
                         _|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|                                                                                                                      
                   _    |_|_|_|_|_| |_|_           _    |_|_|_|_|_| |_|_                                                                                                                       
                 _|_|    _|_|_|_|    _|_|        _|_|    _|_|_|_|    _|_|                                                                                                                      
                |_|_   _|_|_|_|_    |_|         |_|_   _|_|_|_|_    |_|                                                                                                                        
                 _|_|_|_|_|_|_|_|                _|_|_|_|_|_|_|_|                                                                                                                              
                |_| |_|_|_| |_|_                |_| |_|_|_| |_|_                                                                                                                               
                     _|_|    _|_|                    _|_|    _|_|                                                                                                                              
                    |_|     |_|                     |_|     |_|                                                                                                                                

Notation

Il s'agit de , donc le programme le plus court en octets l'emporte.


Je suis sûr que quelqu'un se plaindra de l'imprécision d'une «énorme quantité d'espaces», alors qu'en est-il d'une limite asymptotique?
feersum

1
@feersum Eh bien, j'ai complètement interdit les espaces de fuite, donc personne ne se plaindra maintenant!
Fatalize

2
Je me plains ... maintenant tu es un nazi des blancs!
feersum

@feersum et vous êtes un nazi ellipses horizontales!
Optimizer

C'est la meilleure question fractale de tous les temps, j'espère avoir le temps de participer! Est-il correct de faire pivoter la courbe de 90 180 280 degrés ou doit-il être affiché selon les exemples?
Level River St du

Réponses:


9

Rubis, 239201 octets

Il s'agit d'une fonction lambda qui doit être appelée de la même manière que celle de la version non golfée.

Les améliorations du golf comprennent: l'affectation de 8<<n/2à une variable pour la réutilisation; uptoboucle au lieu de eachboucle; opérateur ternaire au lieu de if..else..end; utilisation de [y,y+=d].maxpour calculer où imprimer le |; utilisation de ?_et ?|au lieu de l'équivalent '|'et '_'; et élimination des redondances %4(merci Sp3000.)

->n{a=Array.new(m=8<<n/2){" "*m}
p=q=1+x=y=m/2
r=3
1.upto(1<<n){|i|d=(r&2)-1
r%2>0?(a[y][x+=d]=?_
x+=d):(a[[y,y+=d].max][x]=?|
p=x<p ?x:p
q=x>q ?x:q)
r+=i/(i&-i)}
a.delete(a[0])
puts a.map{|e|e[p..q]}}

Il s'appuie sur la formule suivante de Wikipedia:

D'abord, exprimons n sous la forme k * (2 ^ m) où k est un nombre impair. La direction du nième tour est déterminée par k mod 4 c'est-à-dire le reste à gauche lorsque k est divisé par 4. Si k mod 4 est 1 alors le nième tour est R; si k mod 4 est 3 alors le nième tour est L.

Wikipedia donne le code suivant:

Il existe une méthode simple non récursive sur une ligne pour implémenter la méthode k mod 4 ci-dessus pour trouver la direction de virage dans le code. En traitant le tour n comme un nombre binaire, calculez la valeur booléenne suivante: bool turn = (((n & −n) << 1) & n) != 0

J'ai amélioré cela à l' i/(i&-i)%4aide de la même technique d'utilisation de l'expression i&-ipour trouver le chiffre le moins significatif mais mon expression donne directement 1 (pour le virage à gauche) ou 3 (pour le virage à droite), ce qui est pratique car je suit la direction sous forme de nombre 0..3(dans ordre nord, ouest, sud, est pour des raisons de golf.)

Original non golfé dans le programme de test

f=->n{
  a=Array.new(8<<n/2){" "*(8<<n/2)}  #Make an array of strings of spaces of appropriate size 
  p=q=1+x=y=4<<n/2                   #set x&y to the middle of the array, p&q to the place where the underscore for n=0 will be printed.                             
  r=3                                #direction pointer, headed East
  (1..1<<n).each{|i|                 #all elements, starting at 1
    d=(r&2)-1                          #d is +1 for East and South, -1 for West and North
    if r%2>0                           #if horizontal
      a[y][x+=d]='_'                     #move cursor 1 position in direction d, print underscore,
      x+=d                               #and move again.
    else                               #else vertical
      a[(y+([d,0].max))][x]='|'          #draw | on the same line if d negative, line below if d positive
      y+=d                               #move cursor
      p=x<p ?x:p                         #update minimum and maximum x values for whitespace truncation later
      q=x>q ?x:q                         #(must be done for vertical bars, to avoid unnecesary space in n=0 case)
    end
    r=(r+i/(i&-i))%4                   #update direction
  }
  a.delete(a[0])                     #first line of a is blank. delete all blank lines.
  puts a.map!{|e|e[p..q]}                 #use p and q to truncate all strings to avoid unnecessary whitespace to left and right.
}


f.call(0)
f.call(2)
f.call(3)
f.call(11)

@Fatalize les deux fonctions sont (actuellement) identiques (sauf pour les commentaires et les espaces.) J'ai ajouté l'impression à stdout au lieu de renvoyer une valeur (+5 octets) et supprimé le f=au début car cela n'est normalement pas compté pour un anonyme définition de la fonction (-2 octets.) Plus de golf demain. Notez que vous devrez toujours exécuter la fonction golfed, en l'attribuant à une variable f=->n{.....}et en l'appelant en utilisant f.call(n)comme dans l'exemple de programme de test.
Level River St

1
@Fatalize BTW Je pense que la fractale est absolument géniale dans ma console. Merci pour le défi.
Level River St

@ Sp3000 %4n'est en effet pas nécessaire, car il rn'est utilisé que dans les expressions r%2et r&2. Merci pour le conseil. Je suis maintenant à 202.
Level River St

8

Python 2, 270 222 octets

y=X=Y=0
i=m=x=1
D={}
k=2**input()
while~k+i:j=Y+(y>0);s={2*X+x};D[j]=D.get(j,s)|s;m=min(m,*s);Y+=y;X+=x;exec i/(i&-i)*"x,y=y,-x;";i+=1
for r in sorted(D):print"".join(" | _"[(n in D[r])+n%2*2]for n in range(m,max(D[r])+1))

Maintenant, en utilisant la formule pour le nième tour. J'ai vu la (((n & −n) << 1) & n)formule sur Wikipedia, mais je ne me suis pas rendu compte de son utilité jusqu'à ce que je la voie dans la réponse de @ steveverrill . En fait, je laisse tomber le %4aussi, donc il y a beaucoup de rotation en cours, ce qui prend du temps pour les entrées plus importantes.


Remarque secondaire: Ce n'est pas une sortie graphique, mais voici un code de tortue golfée:

from turtle import*
for i in range(1,2**input()+1):fd(5);lt(i/(i&-i)*90)

Tant que cela ne prend pas une heure pour fonctionner, ça me va
Fatalize

Si je comprends bien, votre deuxième code pourrait être modifié très légèrement pour devenir une réponse à ce défi .
nedla2004

3

C #, 337 octets

Il y a un peu d'abus de règles ici. Il n'y a aucune restriction sur l'espace de tête. Malheureusement, la toile est finie, il y a donc une limite supérieure pour n .

En retrait pour plus de clarté:

using C=System.Console;
class P{
    static void Main(string[]a){
        int n=int.Parse(a[0]),d=2,x=250,y=500;
        var f="0D";
        while(n-->0)
            f=f.Replace("D","d3t03").Replace("T","10d1t").ToUpper();
        C.SetBufferSize(999,999);
        foreach(var c in f){
            n=c&7;
            d=(d+n)%4;
            if(n<1){
                var b=d%2<1;
                x+=n=b?1-d:0;
                y+=b?0:2-d;
                C.SetCursorPosition(x*2-n,y+d/3);
                C.Write(b?'_':'|');
            }
        }
    }
}

1

JavaScript (ES6), 220

Utilisation de la formule wikipedia pour les virages à gauche et à droite.

n=>(d=>{for(i=x=y=d;i<1<<n;d+=++i/(i&-i))z=d&2,(w=d&1)?y+=z/2:x+=1-z,g=x<0?g.map(r=>[,,...r],x=1):g,g=y<0?[y=0,...g]:g,r=g[y]=g[y]||[],r[x]='_|'[w],w?y-=!z:x+=1-z})(0,g=[])||g.map(r=>[...r].map(c=>c||' ').join``).join`
`

Moins golfé

n=>{
  g=[];
  for(i=x=y=d=0;i<1<<n;d+=++i/(i&-i))
    z=d&2,
    (w=d&1)?y+=z/2:x+=1-z,
    g=x<0?g.map(r=>[,,...r],x=1):g,
    g=y<0?[y=0,...g]:g,
    r=g[y]=g[y]||[],
    r[x]='_|'[w],
    w?y-=!z:x+=1-z
  return g.map(r=>[...r].map(c=>c||' ').join``).join`\n`
}

F=
n=>(d=>{for(i=x=y=d;i<1<<n;d+=++i/(i&-i))z=d&2,(w=d&1)?y+=z/2:x+=1-z,g=x<0?g.map(r=>[,,...r],x=1):g,g=y<0?[y=0,...g]:g,r=g[y]=g[y]||[],r[x]='_|'[w],w?y-=!z:x+=1-z})(0,g=[])||g.map(r=>[...r].map(c=>c||' ').join``).join`
`

function update() {
  var n=+I.value
  O.textContent=F(n)
}

update()
pre { font-size: 8px }
<input id=I value=5 type=number oninput='update()'><pre id=O></pre>


1

APL (Dyalog Unicode) , 65 64 octets SBCS

('_|'⍴⍨≢a)@a⍴∘''1+⌈/a←(⊢-⌊/)⌈2+/÷∘¯2 1¨11 9∘○¨+\0,(⊢,0j1×⌽)⍣⎕,1

Essayez-le en ligne!

(⊢,0j1×⌽)⍣⎕,1génère une liste d'étapes sous forme de nombres complexes. Il démarre 1et ajoute à plusieurs reprises ( ,) une copie inversée ( ) de la liste multipliée par 0j1= sqrt (-1).

+\0, ajouter 0 et calculer les sommes de préfixe

11 9∘○¨ décomposer le complexe en paires (réelles; imaginaires)

÷∘¯2 1¨ divisez les parties réelles par -2

2+/ sommes de paires adjacentes

plafond

(⊢-⌊/) soustraire les minima de tous, de sorte que les coordonnées ne soient pas négatives

a← affecter à a

⍴∘''⊃1+⌈/ créer une matrice de caractères vide de telle sorte que les coords max puissent s'adapter

('_|'⍴⍨≢a)@amettre en alternance _et |aux coordonnées dea

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.