Empilement des triangles de Pythagore


23

Contexte

Un triangle de Pythagore est un triangle rectangle où chaque longueur de côté est un entier (c'est-à-dire que les longueurs de côté forment un triple de Pythagore ):

Triangle de Pythagore

En utilisant les côtés de ce triangle, nous pouvons attacher deux autres triangles de Pythagore non congruents comme suit:

Triangle Stack 1

Nous pouvons continuer avec ce motif comme bon nous semble, tant qu'il n'y a pas deux triangles qui se chevauchent et que les côtés de connexion ont une longueur égale:

entrez la description de l'image ici

La question est, combien de triangles de Pythagore non congruents pouvons-nous tenir dans un espace donné?

L'entrée

Vous recevrez deux entiers en entrée Wet H, via les arguments de fonction, STDIN, des chaînes ou tout ce que vous voulez. Les entiers peuvent être reçus sous forme décimale, hexadécimale, binaire, unaire (bonne chance, rétine ) ou toute autre base entière. Vous pouvez supposer cela max(W, H) <= 2^15 - 1.

Le résultat

Votre programme ou fonction doit calculer une liste de triangles de Pythagore non congruents connectés qui ne se chevauchent pas et produire une liste d'ensembles de trois coordonnées chacun, où les coordonnées dans un ensemble forment l'un des triangles de Pythagore lorsqu'elles sont connectées par des lignes. Les coordonnées doivent être des nombres réels dans notre espace ( xdoivent être dans l'intervalle [0, W]et ydoivent être dans l'intervalle [0, H]), et la distance doit être précise selon la précision de la machine. L'ordre des triangles et le format exact de chaque coordonnée ne sont pas importants.

Il doit être possible de «marcher» d'un triangle à un autre en franchissant uniquement les frontières connectées.

En utilisant le diagramme ci - dessus à titre d'exemple, que notre entrée soit W = 60, H = 60.

Notre sortie pourrait alors être la liste de coordonnées suivante:

(0, 15), (0, 21), (8, 15)
(0, 21), (14.4, 40.2), (8, 15)
(0, 15), (8, 0), (8, 15)
(8, 0), (8, 15), (28, 15)
(8, 15), (28, 15), (28, 36)
(28, 15), (28, 36), (56, 36)

Maintenant, 6 triangles n'est certainement pas le meilleur que nous puissions faire étant donné notre espace. Pouvez-vous faire mieux?

Règles et notation

  • Votre score pour ce défi est le nombre de triangles générés par votre programme en fonction de l'entrée W = 1000, H = 1000. Je me réserve le droit de modifier cette entrée si je soupçonne quelqu'un de coder en dur cette affaire.

  • Vous ne pouvez pas utiliser de commandes intégrées qui calculent des triplets de Pythagore, et vous ne pouvez pas coder en dur une liste de plus de 2 triplets de Pythagore (si vous codez en dur votre programme pour toujours commencer par un triangle (3, 4, 5) ou une autre circonstance de départ similaire, qui est correct).

  • Vous pouvez rédiger votre soumission dans n'importe quelle langue. La lisibilité et les commentaires sont encouragés.

  • Vous pouvez trouver une liste de triplets pythagoriciens ici .

  • Les échappatoires standard ne sont pas autorisées.


Pouvons-nous utiliser plus d'une instance du même triangle dans l'espace?
DavidC

1
@DavidCarraher Deux triangles générés par votre programme peuvent ne pas être congrus.
BrainSteel


Ce problème nécessite beaucoup de calculs, n'est-ce pas? D'autant plus qu'il s'agit d'un problème d'emballage.
Renae Lider

1
@KeithRandall Ils sont similaires, pas congruents.
Geobits

Réponses:


16

Python 3, 109

C'était certainement un défi trompeusement difficile. Il y a eu plusieurs fois en écrivant le code que je me suis retrouvé à remettre en question mes capacités de base en géométrie. Cela étant dit, je suis assez content du résultat. Je n'ai fait aucun effort pour trouver un algorithme complexe pour placer les triangles, et à la place, mon code se contente de toujours placer le plus petit qu'il puisse trouver. J'espère pouvoir améliorer cela plus tard, ou ma réponse en repoussera d'autres pour trouver un meilleur algorithme! Dans l'ensemble, c'est un problème très amusant et cela produit des images intéressantes.

Voici le code:

import time
import math

W = int(input("Enter W: "))
H = int(input("Enter H: "))

middle_x = math.floor(W/2)
middle_y = math.floor(H/2)

sides = [ # each side is in the format [length, [x0, y0], [x1, y1]]
    [3,[middle_x,middle_y],[middle_x+3,middle_y]],
    [4,[middle_x,middle_y],[middle_x,middle_y+4]],
    [5,[middle_x+3,middle_y],[middle_x,middle_y+4]]
    ]

triangles = [[0,1,2]] # each triangle is in the format [a, b, c] where a, b and c are the indexes of sides

used_triangles = [[3,4,5]] # a list of used Pythagorean triples, where lengths are ordered (a < b < c)

max_bounds_length = math.sqrt(W**2 + H**2)

def check_if_pyth_triple(a,b): # accepts two lists of the form [l, [x0,y0], [x1,y1]] defining two line segments
    # returns 0 if there are no triples, 1 if there is a triple with a right angle on a,
    # and 2 if there is a triple with the right angle opposite a
    c = math.sqrt(a[0]**2 + b[0]**2)
    if c.is_integer():
        if not sorted([a[0], b[0], c]) in used_triangles:
            return 1
        return 0
    else:
        if a[0] > b[0]:
            c = math.sqrt(a[0]**2 - b[0]**2)
            if c.is_integer() and not sorted([a[0], b[0], c]) in used_triangles:
                return 2
        return 0

def check_if_out_of_bounds(p):
    out = False
    if p[0] < 0 or p[0] > W:
        out = True
    if p[1] < 0 or p[1] > H:
        out = True
    return out

def in_between(a,b,c):
    maxi = max(a,c)
    mini = min(a,c)
    return mini < b < maxi

def sides_intersect(AB,CD): # accepts two lists of the form [l, [x0,y0], [x1,y1]] defining two line segments
    # doesn't count overlapping lines
    A = AB[1]
    B = AB[2]
    C = CD[1]
    D = CD[2]

    if A[0] == B[0]: # AB is vertical
        if C[0] == D[0]: # CD is vertical
            return False
        else:
            m1 = (C[1] - D[1])/(C[0] - D[0]) # slope of CD
            y = m1*(A[0] - C[0]) + C[1] # the y value of CD at AB's x value
            return in_between(A[1], y, B[1]) and in_between(C[0], A[0], D[0])
    else:
        m0 = (A[1] - B[1])/(A[0] - B[0]) # slope of AB
        if C[0] == D[0]: # CD is vertical
            y = m0*(C[0] - A[0]) + A[1] # the y value of CD at AB's x value
            return in_between(C[1], y, D[1]) and in_between(A[0],C[0],B[0])
        else:
            m1 = (C[1] - D[1])/(C[0] - D[0]) # slope of CD
            if m0 == m1:
                return False
            else:
                x = (m0*A[0] - m1*C[0] - A[1] + C[1])/(m0 - m1)
                return in_between(A[0], x, B[0]) and in_between(C[0], x, D[0])

def check_all_sides(b,triangle):
    no_intersections = True
    for side in sides:
        if sides_intersect(side, b):
            no_intersections = False
            break

    return no_intersections

def check_point_still_has_room(A): # This function is needed for the weird case when all 2pi degrees
    # around a point are filled by triangles, but you could fit in a small triangle into another one
    # already built around the point. Doing this won't cause sides_intersect() to detect it because
    # the sides will all be parallel. Crazy stuff.
    connecting_sides = []
    for side in sides:
        if A in side:
            connecting_sides.append(side)

    match_count = 0
    slopes = []
    for side in connecting_sides:
        B = side[1]
        if A == B:
            B = side[2]
        if not A[0] == B[0]:
            slope = round((A[1]-B[1])/(A[0]-B[0]),4)
        else:
            if A[1] < B[1]:
                slope = "infinity"
            else:
                slope = "neg_infinity"
        if slope in slopes:
            match_count -= 1
        else:
            slopes.append(slope)
            match_count += 1

    return match_count != 0

def construct_b(a,b,pyth_triple_info,straight_b_direction,bent_b_direction):
    # this function finds the correct third point of the triangle given a and the length of b
    # pyth_triple_info determines if a is a leg or the hypotenuse
    # the b_directions determine on which side of a the triangle should be formed
    a_p = 2 # this is the index of the point in a that is not the shared point with b
    if a[1] != b[1]:
        a_p = 1

    vx = a[a_p][0] - b[1][0] # v is our vector, and these are the coordinates, adjusted so that
    vy = a[a_p][1] - b[1][1] # the shared point is the origin

    if pyth_triple_info == 1:
        # because the dot product of orthogonal vectors is zero, we can use that and the Pythagorean formula
        # to get this simple formula for generating the coordinates of b's second point
        if vy == 0:
            x = 0
            y = b[0]
        else:
            x = b[0]/math.sqrt(1+((-vx/vy)**2)) # b[0] is the desired length
            y = -vx*x/vy

        x = x*straight_b_direction # since the vector is orthagonal, if we want to reverse the direction,
        y = y*straight_b_direction # it just means finding the mirror point

    elif pyth_triple_info == 2: # this finds the intersection of the two circles of radii b[0] and c 
        # around a's endpoints, which is the third point of the triangle if a is the hypotenuse
        c = math.sqrt(a[0]**2 - b[0]**2)
        D = a[0]
        A = (b[0]**2 - c**2 + D**2 ) / (2*D)
        h = math.sqrt(b[0]**2 - A**2)
        x2 = vx*(A/D)
        y2 = vy*(A/D)        
        x = x2 + h*vy/D
        y = y2 - h*vx/D

        if bent_b_direction == -1: # this constitutes reflection of the vector (-x,-y) around the normal vector n,
            # which accounts for finding the triangle on the opposite side of a
            dx = -x
            dy = -y
            v_length = math.sqrt(vx**2 + vy**2)
            nx = vx/v_length
            ny = vy/v_length

            d_dot_n = dx*nx + dy*ny

            x = dx - 2*d_dot_n*nx
            y = dy - 2*d_dot_n*ny

    x = x + b[1][0] # adjust back to the original frame
    y = y + b[1][1]

    return [x,y]

def construct_triangle(side_index):
    a = sides[side_index] # a is the base of the triangle
    a_p = 1
    b = [1, a[a_p], []] # side b, c is hypotenuse

    for index, triangle in enumerate(triangles):
        if side_index in triangle:
            triangle_index = index
            break

    triangle = list(triangles[triangle_index])
    triangle.remove(side_index)

    add_tri = False

    straight_b = construct_b(a,b,1,1,1)

    bent_b = construct_b(a,b,2,1,1)

    A = sides[triangle[0]][1]
    if A in a:
        A = sides[triangle[0]][2]

    Ax = A[0] - b[1][0] # adjusting A so that it's a vector
    Ay = A[1] - b[1][1]

    # these are for determining if construct_b() is going to the correct side
    triangle_on_side = (a[2][0]-a[1][0])*(A[1]-a[1][1]) - (a[2][1]-a[1][1])*(A[0]-a[1][0])
    straight_b_on_side = (a[2][0]-a[1][0])*(straight_b[1]-a[1][1]) - (a[2][1]-a[1][1])*(straight_b[0]-a[1][0])
    bent_b_on_side = (a[2][0]-a[1][0])*(bent_b[1]-a[1][1]) - (a[2][1]-a[1][1])*(bent_b[0]-a[1][0])

    straight_b_direction = 1
    if (triangle_on_side > 0 and straight_b_on_side > 0) or (triangle_on_side < 0 and straight_b_on_side < 0):
        straight_b_direction = -1

    bent_b_direction = 1
    if (triangle_on_side > 0 and bent_b_on_side > 0) or (triangle_on_side < 0 and bent_b_on_side < 0):
        bent_b_direction = -1


    a_ps = []
    for x in [1,2]:
        if check_point_still_has_room(a[x]): # here we check for that weird exception
            a_ps.append(x)

    while True:
        out_of_bounds = False
        if b[0] > max_bounds_length:
            break

        pyth_triple_info = check_if_pyth_triple(a,b)

        for a_p in a_ps:
            if a_p == 1: # this accounts for the change in direction when switching a's points
                new_bent_b_direction = bent_b_direction
            else:
                new_bent_b_direction = -bent_b_direction

            b[1] = a[a_p]
            if pyth_triple_info > 0:
                b[2] = construct_b(a,b,pyth_triple_info,straight_b_direction,new_bent_b_direction)

                if check_if_out_of_bounds(b[2]): # here is the check to make sure we don't go out of bounds
                    out_of_bounds = True
                    break

                if check_all_sides(b,triangle):
                    if pyth_triple_info == 1:
                        c = [math.sqrt(a[0]**2 + b[0]**2), a[3-a_p], b[2]]
                    else:
                        c = [math.sqrt(a[0]**2 - b[0]**2), a[3-a_p], b[2]]

                    if check_all_sides(c,triangle):
                        add_tri = True
                        break

        if out_of_bounds or add_tri:
            break

        b[0] += 1 # increment the length of b every time the loop goes through

    if add_tri: # this adds a new triangle
        sides.append(b)
        sides.append(c)
        sides_len = len(sides)
        triangles.append([side_index, sides_len - 2, sides_len - 1])
        used_triangles.append(sorted([a[0], b[0], c[0]])) # so we don't use the same triangle again

def build_all_triangles(): # this iterates through every side to see if a new triangle can be constructed
    # this is probably where real optimization would take place so more optimal triangles are placed first
    t0 = time.clock()

    index = 0
    while index < len(sides):
        construct_triangle(index)
        index += 1

    t1 = time.clock()

    triangles_points = [] # this is all for printing points
    for triangle in triangles:
        point_list = []
        for x in [1,2]:
            for side_index in triangle:
                point = sides[side_index][x]
                if not point in point_list:
                    point_list.append(point)
        triangles_points.append(point_list)

    for triangle in triangles_points:
        print(triangle)

    print(len(triangles), "triangles placed in", round(t1-t0,3), "seconds.")

def matplotlib_graph(): # this displays the triangles with matplotlib
    import pylab as pl
    import matplotlib.pyplot as plt
    from matplotlib import collections as mc

    lines = []
    for side in sides:
        lines.append([side[1],side[2]])

    lc = mc.LineCollection(lines)
    fig, ax = pl.subplots()
    ax.add_collection(lc)
    ax.autoscale()
    ax.margins(0.1)
    plt.show()

build_all_triangles()

Voici un graphique de la sortie pour W = 1000etH = 1000 avec 109 triangles: Graphique des triangles tracés avec matplotlib

Voici W = 10000etH = 10000 avec 724 triangles: Graphique des triangles tracés avec matplotlib

Appeler le matplotlib_graph() fonction après build_all_triangles()pour représenter graphiquement les triangles.

Je pense que le code fonctionne assez rapidement: à W = 1000et H = 1000cela prend 0,66 seconde, et à W = 10000et H = 10000cela prend 45 secondes en utilisant mon ordinateur portable merdique.


J'ai vraiment besoin de terminer ma solution. J'étais assez loin il y a quelques semaines, mais je n'ai jamais réussi à le terminer. C'est en effet beaucoup de travail! En particulier avec les tests d'intersection, et les faire fonctionner correctement pour les cas dégénérés. Je pense que je sais quelle approche je veux utiliser pour cela, mais c'est la partie que je n'ai pas encore terminée.
Reto Koradi

1
Wow, c'est une excellente première solution! J'aime particulièrement les graphiques. Je suis content que vous ayez apprécié ce défi et j'espère que vous resterez avec PPCG!
BrainSteel

C'est probablement l'image la plus chaotique que j'ai jamais vue
Beta Decay

16

C ++, 146 triangles (partie 1/2)

Résultat comme image

Résultat

Description de l'algorithme

Cela utilise une recherche en premier lieu de l'espace de la solution. À chaque étape, il commence par toutes les configurations uniques de ktriangles qui tiennent dans la boîte et crée toutes les configurations uniques de k + 1triangles en énumérant toutes les options d'ajout d'un triangle inutilisé à l'une des configurations.

L'algorithme est essentiellement configuré pour trouver le maximum absolu avec un BFS exhaustif. Et il le fait avec succès pour les petites tailles. Par exemple, pour une boîte de 50x50, il trouve le maximum en 1 minute environ. Mais pour 1000x1000, l'espace de la solution est beaucoup trop grand. Pour lui permettre de se terminer, je coupe la liste des solutions après chaque étape. Le nombre de solutions conservées est donné par un argument de ligne de commande. Pour la solution ci-dessus, une valeur de 50 a été utilisée. Cela a entraîné un temps d'exécution d'environ 10 minutes.

Le contour des principales étapes ressemble à ceci:

  1. Générez tous les triangles de Pythagore qui pourraient potentiellement tenir à l'intérieur de la boîte.
  2. Générez le jeu de solutions initial composé de solutions avec 1 triangle chacune.
  3. Boucle sur plusieurs générations (nombre de triangles).
    1. Éliminez les solutions non valides de l'ensemble de solutions. Ce sont des solutions qui ne rentrent pas dans la boîte ou qui se chevauchent.
    2. Si l'ensemble de solutions est vide, nous avons terminé. L'ensemble de solutions de la génération précédente contient les maxima.
    3. Solution de rognage définie sur une taille donnée si l'option de rognage était activée.
    4. Parcourez toutes les solutions de la génération actuelle.
      1. Boucle sur tous les côtés dans le périmètre de la solution.
        1. Trouvez tous les triangles dont la longueur latérale correspond au côté périmétrique et qui ne sont pas encore dans la solution.
        2. Générez les nouvelles solutions résultant de l'ajout des triangles et ajoutez les solutions à l'ensemble de solutions de la nouvelle génération.
  4. Solutions d'impression.

Un aspect critique de l'ensemble du système est que les configurations seront généralement générées plusieurs fois, et nous ne nous intéressons qu'aux configurations uniques. Nous avons donc besoin d'une clé unique qui définit une solution, qui doit être indépendante de l'ordre des triangles utilisés lors de la génération de la solution. Par exemple, l'utilisation de coordonnées pour la clé ne fonctionnerait pas du tout, car elles peuvent être complètement différentes si nous arrivons à la même solution dans plusieurs commandes. Ce que j'ai utilisé, c'est l'ensemble des indices de triangle dans la liste globale, plus un ensemble d'objets «connecteurs» qui définissent comment les triangles sont connectés. Ainsi, la clé code uniquement la topologie, indépendamment de l'ordre de construction et de la position dans l'espace 2D.

Bien qu'il s'agisse davantage d'un aspect de mise en œuvre, une autre partie qui n'est pas entièrement triviale consiste à décider si et comment le tout s'intègre dans la boîte donnée. Si vous voulez vraiment repousser les limites, il est évidemment nécessaire de permettre une rotation pour s'adapter à l'intérieur de la boîte.

Je vais essayer d'ajouter quelques commentaires au code dans la partie 2 plus tard, au cas où quelqu'un voudrait se plonger dans les détails de la façon dont tout cela fonctionne.

Résultat au format texte officiel

(322.085, 641.587) (318.105, 641.979) (321.791, 638.602)
(318.105, 641.979) (309.998, 633.131) (321.791, 638.602)
(318.105, 641.979) (303.362, 639.211) (309.998, 633.131)
(318.105, 641.979) (301.886, 647.073) (303.362, 639.211)
(301.886, 647.073) (297.465, 638.103) (303.362, 639.211)
(301.886, 647.073) (280.358, 657.682) (297.465, 638.103)
(301.886, 647.073) (283.452, 663.961) (280.358, 657.682)
(301.886, 647.073) (298.195, 666.730) (283.452, 663.961)
(301.886, 647.073) (308.959, 661.425) (298.195, 666.730)
(301.886, 647.073) (335.868, 648.164) (308.959, 661.425)
(335.868, 648.164) (325.012, 669.568) (308.959, 661.425)
(308.959, 661.425) (313.666, 698.124) (298.195, 666.730)
(313.666, 698.124) (293.027, 694.249) (298.195, 666.730)
(313.666, 698.124) (289.336, 713.905) (293.027, 694.249)
(298.195, 666.730) (276.808, 699.343) (283.452, 663.961)
(335.868, 648.164) (353.550, 684.043) (325.012, 669.568)
(303.362, 639.211) (276.341, 609.717) (309.998, 633.131)
(276.808, 699.343) (250.272, 694.360) (283.452, 663.961)
(335.868, 648.164) (362.778, 634.902) (353.550, 684.043)
(362.778, 634.902) (367.483, 682.671) (353.550, 684.043)
(250.272, 694.360) (234.060, 676.664) (283.452, 663.961)
(362.778, 634.902) (382.682, 632.942) (367.483, 682.671)
(382.682, 632.942) (419.979, 644.341) (367.483, 682.671)
(419.979, 644.341) (379.809, 692.873) (367.483, 682.671)
(353.550, 684.043) (326.409, 737.553) (325.012, 669.568)
(353.550, 684.043) (361.864, 731.318) (326.409, 737.553)
(353.550, 684.043) (416.033, 721.791) (361.864, 731.318)
(416.033, 721.791) (385.938, 753.889) (361.864, 731.318)
(385.938, 753.889) (323.561, 772.170) (361.864, 731.318)
(385.938, 753.889) (383.201, 778.739) (323.561, 772.170)
(383.201, 778.739) (381.996, 789.673) (323.561, 772.170)
(323.561, 772.170) (292.922, 743.443) (361.864, 731.318)
(323.561, 772.170) (296.202, 801.350) (292.922, 743.443)
(250.272, 694.360) (182.446, 723.951) (234.060, 676.664)
(335.868, 648.164) (330.951, 570.319) (362.778, 634.902)
(330.951, 570.319) (381.615, 625.619) (362.778, 634.902)
(330.951, 570.319) (375.734, 565.908) (381.615, 625.619)
(330.951, 570.319) (372.989, 538.043) (375.734, 565.908)
(323.561, 772.170) (350.914, 852.648) (296.202, 801.350)
(323.561, 772.170) (362.438, 846.632) (350.914, 852.648)
(234.060, 676.664) (217.123, 610.807) (283.452, 663.961)
(217.123, 610.807) (249.415, 594.893) (283.452, 663.961)
(375.734, 565.908) (438.431, 559.733) (381.615, 625.619)
(382.682, 632.942) (443.362, 567.835) (419.979, 644.341)
(443.362, 567.835) (471.667, 606.601) (419.979, 644.341)
(323.561, 772.170) (393.464, 830.433) (362.438, 846.632)
(372.989, 538.043) (471.272, 556.499) (375.734, 565.908)
(372.989, 538.043) (444.749, 502.679) (471.272, 556.499)
(372.989, 538.043) (365.033, 521.897) (444.749, 502.679)
(443.362, 567.835) (544.353, 553.528) (471.667, 606.601)
(544.353, 553.528) (523.309, 622.384) (471.667, 606.601)
(544.353, 553.528) (606.515, 572.527) (523.309, 622.384)
(419.979, 644.341) (484.688, 697.901) (379.809, 692.873)
(444.749, 502.679) (552.898, 516.272) (471.272, 556.499)
(217.123, 610.807) (170.708, 516.623) (249.415, 594.893)
(484.688, 697.901) (482.006, 753.837) (379.809, 692.873)
(484.688, 697.901) (571.903, 758.147) (482.006, 753.837)
(419.979, 644.341) (535.698, 636.273) (484.688, 697.901)
(276.808, 699.343) (228.126, 812.299) (250.272, 694.360)
(228.126, 812.299) (185.689, 726.188) (250.272, 694.360)
(228.126, 812.299) (192.246, 829.981) (185.689, 726.188)
(393.464, 830.433) (449.003, 936.807) (362.438, 846.632)
(393.464, 830.433) (468.505, 926.625) (449.003, 936.807)
(416.033, 721.791) (471.289, 833.915) (385.938, 753.889)
(471.289, 833.915) (430.252, 852.379) (385.938, 753.889)
(350.914, 852.648) (227.804, 874.300) (296.202, 801.350)
(192.246, 829.981) (114.401, 834.898) (185.689, 726.188)
(114.401, 834.898) (155.433, 715.767) (185.689, 726.188)
(217.123, 610.807) (91.773, 555.523) (170.708, 516.623)
(91.773, 555.523) (141.533, 457.421) (170.708, 516.623)
(141.533, 457.421) (241.996, 407.912) (170.708, 516.623)
(141.533, 457.421) (235.365, 394.457) (241.996, 407.912)
(241.996, 407.912) (219.849, 525.851) (170.708, 516.623)
(241.996, 407.912) (304.896, 419.724) (219.849, 525.851)
(91.773, 555.523) (55.917, 413.995) (141.533, 457.421)
(571.903, 758.147) (476.260, 873.699) (482.006, 753.837)
(571.903, 758.147) (514.819, 890.349) (476.260, 873.699)
(571.903, 758.147) (587.510, 764.886) (514.819, 890.349)
(587.510, 764.886) (537.290, 898.778) (514.819, 890.349)
(587.510, 764.886) (592.254, 896.801) (537.290, 898.778)
(587.510, 764.886) (672.455, 761.831) (592.254, 896.801)
(55.917, 413.995) (113.819, 299.840) (141.533, 457.421)
(113.819, 299.840) (149.275, 293.604) (141.533, 457.421)
(544.353, 553.528) (652.112, 423.339) (606.515, 572.527)
(652.112, 423.339) (698.333, 461.597) (606.515, 572.527)
(535.698, 636.273) (651.250, 731.917) (484.688, 697.901)
(651.250, 731.917) (642.213, 756.296) (484.688, 697.901)
(304.896, 419.724) (299.444, 589.636) (219.849, 525.851)
(304.896, 419.724) (369.108, 452.294) (299.444, 589.636)
(304.896, 419.724) (365.965, 299.326) (369.108, 452.294)
(304.896, 419.724) (269.090, 347.067) (365.965, 299.326)
(114.401, 834.898) (0.942, 795.820) (155.433, 715.767)
(114.401, 834.898) (75.649, 947.412) (0.942, 795.820)
(192.246, 829.981) (124.489, 994.580) (114.401, 834.898)
(269.090, 347.067) (205.435, 217.901) (365.965, 299.326)
(205.435, 217.901) (214.030, 200.956) (365.965, 299.326)
(182.446, 723.951) (68.958, 600.078) (234.060, 676.664)
(182.446, 723.951) (32.828, 633.179) (68.958, 600.078)
(652.112, 423.339) (763.695, 288.528) (698.333, 461.597)
(763.695, 288.528) (808.220, 324.117) (698.333, 461.597)
(763.695, 288.528) (811.147, 229.162) (808.220, 324.117)
(652.112, 423.339) (627.572, 321.247) (763.695, 288.528)
(627.572, 321.247) (660.872, 244.129) (763.695, 288.528)
(652.112, 423.339) (530.342, 344.618) (627.572, 321.247)
(652.112, 423.339) (570.488, 453.449) (530.342, 344.618)
(627.572, 321.247) (503.633, 267.730) (660.872, 244.129)
(365.965, 299.326) (473.086, 450.157) (369.108, 452.294)
(365.965, 299.326) (506.922, 344.440) (473.086, 450.157)
(365.965, 299.326) (394.633, 260.827) (506.922, 344.440)
(394.633, 260.827) (537.381, 303.535) (506.922, 344.440)
(811.147, 229.162) (979.067, 234.338) (808.220, 324.117)
(698.333, 461.597) (706.660, 655.418) (606.515, 572.527)
(811.147, 229.162) (982.117, 135.385) (979.067, 234.338)
(982.117, 135.385) (999.058, 234.954) (979.067, 234.338)
(365.965, 299.326) (214.375, 186.448) (394.633, 260.827)
(811.147, 229.162) (803.145, 154.590) (982.117, 135.385)
(803.145, 154.590) (978.596, 102.573) (982.117, 135.385)
(214.375, 186.448) (314.969, 126.701) (394.633, 260.827)
(314.969, 126.701) (508.984, 192.909) (394.633, 260.827)
(314.969, 126.701) (338.497, 88.341) (508.984, 192.909)
(338.497, 88.341) (523.725, 138.884) (508.984, 192.909)
(338.497, 88.341) (359.556, 11.163) (523.725, 138.884)
(808.220, 324.117) (801.442, 544.012) (698.333, 461.597)
(801.442, 544.012) (739.631, 621.345) (698.333, 461.597)
(660.872, 244.129) (732.227, 78.877) (763.695, 288.528)
(660.872, 244.129) (644.092, 40.821) (732.227, 78.877)
(808.220, 324.117) (822.432, 544.659) (801.442, 544.012)
(660.872, 244.129) (559.380, 47.812) (644.092, 40.821)
(660.872, 244.129) (556.880, 242.796) (559.380, 47.812)
(556.880, 242.796) (528.882, 242.437) (559.380, 47.812)
(808.220, 324.117) (924.831, 449.189) (822.432, 544.659)
(924.831, 449.189) (922.677, 652.177) (822.432, 544.659)
(922.677, 652.177) (779.319, 785.836) (822.432, 544.659)
(779.319, 785.836) (696.630, 771.054) (822.432, 544.659)
(779.319, 785.836) (746.412, 969.918) (696.630, 771.054)
(779.319, 785.836) (848.467, 840.265) (746.412, 969.918)
(848.467, 840.265) (889.327, 872.428) (746.412, 969.918)
(746.412, 969.918) (619.097, 866.541) (696.630, 771.054)
(779.319, 785.836) (993.200, 656.395) (848.467, 840.265)
(993.200, 656.395) (935.157, 864.450) (848.467, 840.265)
(993.200, 656.395) (995.840, 881.379) (935.157, 864.450)
(338.497, 88.341) (34.607, 5.420) (359.556, 11.163)
(338.497, 88.341) (189.294, 204.357) (34.607, 5.420)
(189.294, 204.357) (158.507, 228.296) (34.607, 5.420)
(158.507, 228.296) (38.525, 230.386) (34.607, 5.420)
(158.507, 228.296) (41.694, 412.358) (38.525, 230.386)

Code

Voir la partie 2 pour le code. Cela a été divisé en 2 parties pour contourner les limites de taille des messages.

Le code est également disponible sur PasteBin .


8

C ++, 146 triangles (partie 2/2)

Suite de la partie 1. Cela a été divisé en 2 parties pour contourner les limites de taille des messages.

Code

Commentaires à ajouter.

#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <sstream>
#include <iostream>

class Vec2 {
public:
    Vec2()
      : m_x(0.0f), m_y(0.0f) {
    }

    Vec2(float x, float y)
      : m_x(x), m_y(y) {
    }

    float x() const {
        return m_x;
    }

    float y() const {
        return m_y;
    }

    void normalize() {
        float s = 1.0f / sqrt(m_x * m_x + m_y * m_y);
        m_x *= s;
        m_y *= s;
    }

    Vec2 operator+(const Vec2& rhs) const {
        return Vec2(m_x + rhs.m_x, m_y + rhs.m_y);
    }

    Vec2 operator-(const Vec2& rhs) const {
        return Vec2(m_x - rhs.m_x, m_y - rhs.m_y);
    }

    Vec2 operator*(float s) const {
        return Vec2(m_x * s, m_y * s);
    }

private:
    float m_x, m_y;
};

static float cross(const Vec2& v1, const Vec2& v2) {
    return v1.x() * v2.y() - v1.y() * v2.x();
}

class Triangle {
public:
    Triangle()
      : m_sideLenA(0), m_sideLenB(0), m_sideLenC(0) {
    }

    Triangle(int sideLenA, int sideLenB, int sideLenC)
      : m_sideLenA(sideLenA),
        m_sideLenB(sideLenB),
        m_sideLenC(sideLenC) {
    }

    int getSideLenA() const {
        return m_sideLenA;
    }

    int getSideLenB() const {
        return m_sideLenB;
    }

    int getSideLenC() const {
        return m_sideLenC;
    }

private:
    int m_sideLenA, m_sideLenB, m_sideLenC;
};

class Connector {
public:
    Connector(int sideLen, int triIdx1, int triIdx2, bool flipped);

    bool operator<(const Connector& rhs) const;

    void print() const {
        std::cout << m_sideLen << "/" << m_triIdx1 << "/"
                  << m_triIdx2 << "/" << m_flipped << " ";
    }

private:
    int m_sideLen;
    int m_triIdx1, m_triIdx2;
    bool m_flipped;
};

typedef std::vector<Triangle> TriangleVec;
typedef std::multimap<int, int> SideMap;

typedef std::set<int> TriangleSet;
typedef std::set<Connector> ConnectorSet;

class SolutionKey {
public:
    SolutionKey() {
    }

    void init(int triIdx);
    void add(int triIdx, const Connector& conn);

    bool containsTriangle(int triIdx) const;
    int minTriangle() const;

    bool operator<(const SolutionKey& rhs) const;

    void print() const;

private:
    TriangleSet m_tris;
    ConnectorSet m_conns;
};

typedef std::map<SolutionKey, class SolutionData> SolutionMap;

class SolutionData {
public:
    SolutionData()
      : m_lastPeriIdx(0),
        m_rotAng(0.0f),
        m_xShift(0.0f), m_yShift(0.0f) {
    }

    void init(int triIdx);

    bool fitsInBox();
    bool selfOverlaps() const;

    void nextGeneration(
        const SolutionKey& key, bool useTrim, SolutionMap& rNewSols) const;

    void print() const;

private:
    void addTriangle(
        const SolutionKey& key, int periIdx, int newTriIdx,
        SolutionMap& rNewSols) const;

    std::vector<int> m_periTris;
    std::vector<int> m_periLens;
    std::vector<bool> m_periFlipped;
    std::vector<Vec2> m_periPoints;

    int m_lastPeriIdx;

    std::vector<Vec2> m_triPoints;

    float m_rotAng;
    float m_xShift, m_yShift;
};

static int BoxW  = 0;
static int BoxH  = 0;
static int BoxD2 = 0;

static TriangleVec AllTriangles;
static SideMap AllSides;

Connector::Connector(
    int sideLen, int triIdx1, int triIdx2, bool flipped)
  : m_sideLen(sideLen),
    m_flipped(flipped) {
    if (triIdx1 < triIdx2) {
        m_triIdx1 = triIdx1;
        m_triIdx2 = triIdx2;
    } else {
        m_triIdx1 = triIdx2;
        m_triIdx2 = triIdx1;
    }
}

bool Connector::operator<(const Connector& rhs) const {
    if (m_sideLen < rhs.m_sideLen) {
        return true;
    } else if (m_sideLen > rhs.m_sideLen) {
        return false;
    }

    if (m_triIdx1 < rhs.m_triIdx1) {
        return true;
    } else if (m_triIdx1 > rhs.m_triIdx1) {
        return false;
    }

    if (m_triIdx2 < rhs.m_triIdx2) {
        return true;
    } else if (m_triIdx2 > rhs.m_triIdx2) {
        return false;
    }

    return m_flipped < rhs.m_flipped;
}

void SolutionKey::init(int triIdx) {
    m_tris.insert(triIdx);
}

void SolutionKey::add(int triIdx, const Connector& conn) {
    m_tris.insert(triIdx);
    m_conns.insert(conn);
}

bool SolutionKey::containsTriangle(int triIdx) const {
    return m_tris.count(triIdx);
}

int SolutionKey::minTriangle() const {
    return *m_tris.begin();
}

bool SolutionKey::operator<(const SolutionKey& rhs) const {
    if (m_tris.size() < rhs.m_tris.size()) {
        return true;
    } else if (m_tris.size() > rhs.m_tris.size()) {
        return false;
    }

    TriangleSet::const_iterator triIt1 = m_tris.begin();
    TriangleSet::const_iterator triIt2 = rhs.m_tris.begin();
    while (triIt1 != m_tris.end()) {
        if (*triIt1 < *triIt2) {
           return true;
        } else if (*triIt2 < *triIt1) {
           return false;
        }
        ++triIt1;
        ++triIt2;
    }

    if (m_conns.size() < rhs.m_conns.size()) {
        return true;
    } else if (m_conns.size() > rhs.m_conns.size()) {
        return false;
    }

    ConnectorSet::const_iterator connIt1 = m_conns.begin();
    ConnectorSet::const_iterator connIt2 = rhs.m_conns.begin();
    while (connIt1 != m_conns.end()) {
        if (*connIt1 < *connIt2) {
           return true;
        } else if (*connIt2 < *connIt1) {
           return false;
        }
        ++connIt1;
        ++connIt2;
    }

    return false;
}

void SolutionKey::print() const {
    TriangleSet::const_iterator triIt = m_tris.begin();
    while (triIt != m_tris.end()) {
        std::cout << *triIt << " ";
        ++triIt;
    }
    std::cout << "\n";

    ConnectorSet::const_iterator connIt = m_conns.begin();
    while (connIt != m_conns.end()) {
        connIt->print();
        ++connIt;
    }
    std::cout << "\n";
}

void SolutionData::init(int triIdx) {
    const Triangle& tri = AllTriangles[triIdx];

    m_periTris.push_back(triIdx);
    m_periTris.push_back(triIdx);
    m_periTris.push_back(triIdx);

    m_periLens.push_back(tri.getSideLenB());
    m_periLens.push_back(tri.getSideLenC());
    m_periLens.push_back(tri.getSideLenA());

    m_periFlipped.push_back(false);
    m_periFlipped.push_back(false);
    m_periFlipped.push_back(false);

    m_periPoints.push_back(Vec2(0.0f, 0.0f));
    m_periPoints.push_back(Vec2(tri.getSideLenB(), 0.0f));
    m_periPoints.push_back(Vec2(0.0f, tri.getSideLenA()));

    m_triPoints = m_periPoints;

    m_periPoints.push_back(Vec2(0.0f, 0.0f));
}

bool SolutionData::fitsInBox() {
    int nStep = 8;
    float angInc = 0.5f * M_PI / nStep;

    for (;;) {
        bool mayFit = false;
        float ang = 0.0f;

        for (int iStep = 0; iStep <= nStep; ++iStep) {
            float cosAng = cos(ang);
            float sinAng = sin(ang);

            float xMin = 0.0f;
            float xMax = 0.0f;
            float yMin = 0.0f;
            float yMax = 0.0f;
            bool isFirst = true;

            for (int iPeri = 0; iPeri < m_periLens.size(); ++iPeri) {
                const Vec2& pt = m_periPoints[iPeri];
                float x = cosAng * pt.x() - sinAng * pt.y();
                float y = sinAng * pt.x() + cosAng * pt.y();

                if (isFirst) {
                    xMin = x;
                    xMax = x;
                    yMin = y;
                    yMax = y;
                    isFirst = false;
                } else {
                    if (x < xMin) {
                        xMin = x;
                    } else if (x > xMax) {
                        xMax = x;
                    }
                    if (y < yMin) {
                        yMin = y;
                    } else if (y > yMax) {
                        yMax = y;
                    }
                }
            }

            float w = xMax - xMin;
            float h = yMax - yMin;

            bool fits = false;
            if ((BoxW >= BoxH) == (w >= h)) {
                if (w <= BoxW && h <= BoxH) {
                    m_rotAng = ang;
                    m_xShift = 0.5f * BoxW - 0.5f * (xMax + xMin);
                    m_yShift = 0.5f * BoxH - 0.5f * (yMax + yMin);
                    return true;
                }
            } else {
                if (h <= BoxW && w <= BoxH) {
                    m_rotAng = ang + 0.5f * M_PI;
                    m_xShift = 0.5f * BoxW + 0.5f * (yMax + yMin);
                    m_yShift = 0.5f * BoxH - 0.5f * (xMax + xMin);
                    return true;
                }
            }

            w -= 0.125f * w * angInc * angInc + 0.5f * h * angInc;
            h -= 0.125f * h * angInc * angInc + 0.5f * w * angInc;

            if ((BoxW < BoxH) == (w < h)) {
                if (w <= BoxW && h <= BoxH) {
                    mayFit = true;
                }
            } else {
                if (h <= BoxW && w <= BoxH) {
                    mayFit = true;
                }
            }

            ang += angInc;
        }

        if (!mayFit) {
            break;
        }

        nStep *= 4;
        angInc *= 0.25f;
    }

    return false;
}

static bool intersects(
    const Vec2& p1, const Vec2& p2,
    const Vec2& q1, const Vec2& q2) {

    if (cross(p2 - p1, q1 - p1) * cross(p2 - p1, q2 - p1) > 0.0f) {
        return false;
    }

    if (cross(q2 - q1, p1 - q1) * cross(q2 - q1, p2 - q1) > 0.0f) {
        return false;
    }

    return true;
}

bool SolutionData::selfOverlaps() const {
    int periSize = m_periPoints.size();

    int triIdx = m_periTris[m_lastPeriIdx];
    const Triangle& tri = AllTriangles[triIdx];
    float offsScale = 0.0001f / tri.getSideLenC();

    const Vec2& pt1 = m_periPoints[m_lastPeriIdx];
    const Vec2& pt3 = m_periPoints[m_lastPeriIdx + 1];
    const Vec2& pt2 = m_periPoints[m_lastPeriIdx + 2];

    Vec2 pt1o = pt1 + ((pt2 - pt1) + (pt3 - pt1)) * offsScale;
    Vec2 pt2o = pt2 + ((pt1 - pt2) + (pt3 - pt2)) * offsScale;
    Vec2 pt3o = pt3 + ((pt1 - pt3) + (pt2 - pt3)) * offsScale;

    float xMax = m_periPoints[0].x();
    float yMax = m_periPoints[0].y();
    for (int iPeri = 1; iPeri < m_periLens.size(); ++iPeri) {
        if (m_periPoints[iPeri].x() > xMax) {
            xMax = m_periPoints[iPeri].x();
        }
        if (m_periPoints[iPeri].y() > yMax) {
            yMax = m_periPoints[iPeri].y();
        }
    }

    Vec2 ptOut(xMax + 0.3f, yMax + 0.7f);
    int nOutInter = 0;

    for (int iPeri = 0; iPeri < m_periLens.size(); ++iPeri) {
        int iNextPeri = iPeri + 1;
        if (iPeri == m_lastPeriIdx) {
            ++iNextPeri;
        } else if (iPeri == m_lastPeriIdx + 1) {
            continue;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt1o, pt3o)) {
            return true;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt2o, pt3o)) {
            return true;
        }

        if (intersects(
            m_periPoints[iPeri], m_periPoints[iNextPeri], pt3o, ptOut)) {
            ++nOutInter;
        }
    }

    return nOutInter % 2;
}

void SolutionData::nextGeneration(
    const SolutionKey& key, bool useTrim, SolutionMap& rNewSols) const
{
    int nPeri = m_periLens.size();
    for (int iPeri = (useTrim ? 0 : m_lastPeriIdx); iPeri < nPeri; ++iPeri) {
        int len = m_periLens[iPeri];
        SideMap::const_iterator itCand = AllSides.lower_bound(len);
        SideMap::const_iterator itCandEnd = AllSides.upper_bound(len);
        while (itCand != itCandEnd) {
            int candTriIdx = itCand->second;
            if (!key.containsTriangle(candTriIdx) &&
                candTriIdx > key.minTriangle()) {
                addTriangle(key, iPeri, candTriIdx, rNewSols);
            }
            ++itCand;
        }
    }
}

void SolutionData::print() const {
    float cosAng = cos(m_rotAng);
    float sinAng = sin(m_rotAng);

    int nPoint = m_triPoints.size();

    for (int iPoint = 0; iPoint < nPoint; ++iPoint) {
        const Vec2& pt = m_triPoints[iPoint];
        float x = cosAng * pt.x() - sinAng * pt.y() + m_xShift;
        float y = sinAng * pt.x() + cosAng * pt.y() + m_yShift;
        std::cout << "(" << x << ", " << y << ")";

        if (iPoint % 3 == 2) {
            std::cout << std::endl;
        } else {
            std::cout << " ";
        }
    }
}

void SolutionData::addTriangle(
    const SolutionKey& key, int periIdx, int newTriIdx,
    SolutionMap& rNewSols) const {

    int triIdx = m_periTris[periIdx];
    bool flipped = m_periFlipped[periIdx];
    int len = m_periLens[periIdx];

    Connector conn1(len, triIdx, newTriIdx, flipped);
    SolutionKey newKey1(key);
    newKey1.add(newTriIdx, conn1);
    bool isNew1 = (rNewSols.find(newKey1) == rNewSols.end());

    Connector conn2(len, triIdx, newTriIdx, !flipped);
    SolutionKey newKey2(key);
    newKey2.add(newTriIdx, conn2);
    bool isNew2 = (rNewSols.find(newKey2) == rNewSols.end());

    if (!(isNew1 || isNew2)) {
        return;
    }

    SolutionData data;

    int periSize = m_periLens.size();
    data.m_periTris.resize(periSize + 1);
    data.m_periLens.resize(periSize + 1);
    data.m_periFlipped.resize(periSize + 1);
    data.m_periPoints.resize(periSize + 2);
    for (int k = 0; k <= periIdx; ++k) {
        data.m_periTris[k] = m_periTris[k];
        data.m_periLens[k] = m_periLens[k];
        data.m_periFlipped[k] = m_periFlipped[k];
        data.m_periPoints[k] = m_periPoints[k];
    }
    for (int k = periIdx + 1; k < periSize; ++k) {
        data.m_periTris[k + 1] = m_periTris[k];
        data.m_periLens[k + 1] = m_periLens[k];
        data.m_periFlipped[k + 1] = m_periFlipped[k];
        data.m_periPoints[k + 1] = m_periPoints[k];
    }
    data.m_periPoints[periSize + 1] = m_periPoints[periSize];

    data.m_lastPeriIdx = periIdx;

    data.m_periTris[periIdx] = newTriIdx;
    data.m_periTris[periIdx + 1] = newTriIdx;

    int triSize = m_triPoints.size();
    data.m_triPoints.resize(triSize + 3);
    for (int k = 0; k < triSize; ++k) {
        data.m_triPoints[k] = m_triPoints[k];
    }

    const Triangle& tri = AllTriangles[newTriIdx];
    int lenA = tri.getSideLenA();
    int lenB = tri.getSideLenB();
    int lenC = tri.getSideLenC();

    const Vec2& pt1 = m_periPoints[periIdx];
    const Vec2& pt2 = m_periPoints[periIdx + 1];

    Vec2 v = pt2 - pt1;
    v.normalize();
    Vec2 vn(v.y(), -v.x());

    float dA = lenA;
    float dB = lenB;
    float dC = lenC;

    int len1 = 0, len2 = 0;
    Vec2 pt31, pt32;

    if (len == lenA) {
        len1 = lenB;
        len2 = lenC;
        pt31 = pt1 + vn * dB;
        pt32 = pt2 + vn * dB;
    } else if (len == lenB) {
        len1 = lenC;
        len2 = lenA;
        pt31 = pt2 + vn * dA;
        pt32 = pt1 + vn * dA;
    } else {
        len1 = lenA;
        len2 = lenB;
        pt31 = pt1 + v * (dA * dA / dC) + vn * (dA * dB / dC);
        pt32 = pt1 + v * (dB * dB / dC) + vn * (dA * dB / dC);
    }

    if (isNew1) {
        data.m_periLens[periIdx] = len1;
        data.m_periLens[periIdx + 1] = len2;
        data.m_periFlipped[periIdx] = false;
        data.m_periFlipped[periIdx + 1] = false;
        data.m_periPoints[periIdx + 1] = pt31;

        data.m_triPoints[triSize] = pt1;
        data.m_triPoints[triSize + 1] = pt31;
        data.m_triPoints[triSize + 2] = pt2;

        rNewSols.insert(std::make_pair(newKey1, data));
    }

    if (isNew2) {
        data.m_periLens[periIdx] = len2;
        data.m_periLens[periIdx + 1] = len1;
        data.m_periFlipped[periIdx] = true;
        data.m_periFlipped[periIdx + 1] = true;
        data.m_periPoints[periIdx + 1] = pt32;

        data.m_triPoints[triSize] = pt1;
        data.m_triPoints[triSize + 1] = pt32;
        data.m_triPoints[triSize + 2] = pt2;

        rNewSols.insert(std::make_pair(newKey2, data));
    }
}

static void enumerateTriangles() {
    for (int c = 2; c * c <= BoxD2; ++c) {
        for (int a = 1; 2 * a * a < c * c; ++a) {
            int b = static_cast<int>(sqrt(c * c - a * a) + 0.5f);
            if (a * a + b * b == c * c) {
                Triangle tri(a, b, c);

                int triIdx = AllTriangles.size();
                AllTriangles.push_back(Triangle(a, b, c));

                AllSides.insert(std::make_pair(a, triIdx));
                AllSides.insert(std::make_pair(b, triIdx));
                AllSides.insert(std::make_pair(c, triIdx));
            }
        }
    }
}

static void eliminateInvalid(SolutionMap& rSols) {
    SolutionMap::iterator it = rSols.begin();
    while (it != rSols.end()) {
        SolutionMap::iterator itNext = it;
        ++itNext;

        SolutionData& rSolData = it->second;

        if (!rSolData.fitsInBox()) {
            rSols.erase(it);
        } else if (rSolData.selfOverlaps()) {
            rSols.erase(it);
        }

        it = itNext;
    }
}

static void trimSolutions(SolutionMap& rSols, int trimCount) {
    if (trimCount >= rSols.size()) {
        return;
    }

    SolutionMap::iterator it = rSols.begin();
    for (int iTrim = 0; iTrim < trimCount; ++iTrim) {
        ++it;
    }

    rSols.erase(it, rSols.end());
}

static void nextGeneration(
    const SolutionMap& srcSols, bool useTrim, SolutionMap& rNewSols) {
    SolutionMap::const_iterator it = srcSols.begin();
    while (it != srcSols.end()) {
        const SolutionKey& solKey = it->first;
        const SolutionData& solData = it->second;
        solData.nextGeneration(solKey, useTrim, rNewSols);
        ++it;
    }
}

static void printSolutions(const SolutionMap& sols) {
    std::cout << std::fixed;
    std::cout.precision(3);

    SolutionMap::const_iterator it = sols.begin();
    while (it != sols.end()) {
        const SolutionKey& solKey = it->first;
        solKey.print();
        const SolutionData& solData = it->second;
        solData.print();
        std::cout << std::endl;
        ++it;
    }
}

int main(int argc, char* argv[]) {
    if (argc < 3) {
        std::cerr << "usage: " << argv[0] << " width height [trimCount]"
                  << std::endl;
        return 1;
    }

    std::istringstream streamW(argv[1]);
    streamW >> BoxW;
    std::istringstream streamH(argv[2]);
    streamH >> BoxH;

    int trimCount = 0;
    if (argc > 3) {
        std::istringstream streamTrim(argv[3]);
        streamTrim >> trimCount;
    }

    BoxD2 = BoxW * BoxW + BoxH * BoxH;

    enumerateTriangles();
    int nTri = AllTriangles.size();

    SolutionMap solGen[2];
    int srcGen = 0;

    for (int iTri = 0; iTri < nTri; ++iTri) {
        const Triangle& tri = AllTriangles[iTri];

        SolutionKey solKey;
        solKey.init(iTri);

        SolutionData solData;
        solData.init(iTri);

        solGen[srcGen].insert(std::make_pair(solKey, solData));
    }

    int level = 1;

    for (;;) {
        eliminateInvalid(solGen[srcGen]);
        std::cout << "level: " << level
                  << " solutions: " << solGen[srcGen].size() << std::endl;
        if (solGen[srcGen].empty()) {
            break;
        }

        if (trimCount > 0) {
            trimSolutions(solGen[srcGen], trimCount);
        }

        solGen[1 - srcGen].clear();
        nextGeneration(solGen[srcGen], trimCount > 0, solGen[1 - srcGen]);

        srcGen = 1 - srcGen;
        ++level;
    }

    printSolutions(solGen[1 - srcGen]);

    return 0;
}
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.