C + PicoSAT , 2345 995 952 octets
#include<picosat.h>
#define f(i,a)for(i=a;i;i--)
#define g(a)picosat_add(E,a)
#define b calloc(z+1,sizeof z)
#define e(a,q)if(a)A[q]^A[p]?l[q]++||(j[++k]=q):s[q]||(i[q]=p,u(q));
z,F,v,k,n,h,p,q,r,C,*x,*A,*i,*l,*s,*j,*m;u(p){s[m[++n]=p]=1;e(p%F-1,p-1)e(p%F,p+1)e(p>F,p-F)e(p<=F*v-F,p+F)}t(){f(q,k)l[j[q]]=0;f(q,n)s[m[q]]=0;k=n=0;i[p]=-1;u(p);}main(){void*E=picosat_init();if(scanf("%d,%d",&F,&v)-2)abort();z=F*v;for(x=b;scanf("%d,%d,%d",&r,&p,&q)==3;g(p),g(0))x[p=F-p+q*F]=r;f(p,F*v-F)if(p%F)g(p),g(p+1),g(p+F),g(p+F+1),g(0);for(A=b,i=b,l=b,s=b,j=b,m=b;!C;){picosat_sat(E,C=h=-1);f(p,F*v)A[p]=picosat_deref(E,p)>0,i[p]=0;f(p,F*v)if(x[p])if(i[q=p]){for(g(-q);i[q]+1;)q=i[q],g(-q);g(C=0);}else if(t(),r=n-x[p]){f(q,r<0?k:n)g(r<0?j[q]:-m[q]);g(C=0);}f(p,F*v)if(!i[p])if(t(),A[p]){g(-++z);f(q,k)g(j[q]);g(C=0);f(q,n)g(-m[q]),g(z),g(0);}else{C&=h++;f(q,k)g(-j[q]);g(++z);g(++z);g(0);f(q,F*v)g(s[q]-z),g(q),g(0);}}f(p,F*v)putchar(A[p]?35:46),p%F-1||puts("");}
Essayez-le en ligne!
(Attention: ce lien TIO est une URL de 30 kilo-octets qui contient une copie minifiée de PicoSAT 965, donc vous ne pourrez peut-être pas le charger dans certains navigateurs, mais il se charge au moins dans Firefox et Chrome.)
Comment ça fonctionne
Nous initialisons le solveur SAT avec une variable pour chaque cellule (terre ou eau), et uniquement les contraintes suivantes:
- Chaque cellule numérotée est une terre.
- Chaque rectangle 2 × 2 a au moins un terrain.
Les autres contraintes sont difficiles à encoder directement dans SAT, nous exécutons donc le solveur pour obtenir un modèle, exécutons une séquence de recherches en profondeur d'abord pour trouver les régions connectées de ce modèle et ajoutons des contraintes supplémentaires comme suit:
- Pour chaque cellule numérotée d'une région terrestre trop grande, ajoutez une contrainte selon laquelle il devrait y avoir au moins une cellule d'eau parmi les cellules terrestres actuelles de cette région.
- Pour chaque cellule numérotée d'une région terrestre trop petite, ajoutez une contrainte selon laquelle il devrait y avoir au moins une cellule terrestre parmi les cellules d'eau actuelles bordant cette région.
- Pour chaque cellule numérotée dans la même région terrestre qu'une autre cellule numérotée, ajoutez une contrainte selon laquelle il devrait y avoir au moins une cellule d'eau le long du chemin des cellules terrestres actuelles entre elles (trouvée en parcourant les pointeurs parents laissés par la recherche en profondeur d'abord). ).
- Pour chaque région terrestre comprenant aucune cellule numérotée, ajoutez des contraintes qui
- toutes ces cellules terrestres actuelles devraient être de l'eau, ou
- au moins l'une des cellules d'eau actuelles bordant cette région devrait être terrestre.
- Pour chaque région d'eau, ajoutez des contraintes qui
- toutes ces cellules d'eau actuelles devraient être des terres, ou
- chaque cellule autre que ces cellules d'eau actuelles devrait être terrestre, ou
- au moins une des cellules terrestres actuelles bordant cette région devrait être l'eau.
Profitant de l'interface incrémentielle de la bibliothèque PicoSAT, nous pouvons immédiatement réexécuter le solveur, y compris les contraintes ajoutées, en préservant toutes les inférences précédentes faites par le solveur. PicoSAT nous donne un nouveau modèle, et nous continuons à répéter les étapes ci-dessus jusqu'à ce que la solution soit valide.
C'est remarquablement efficace; il résout 15 × 15 et 20 × 20 instances en une infime fraction de seconde.
(Merci à Lopsy d' avoir suggéré cette idée de contraindre de manière interactive les régions connectées dans un solveur SAT incrémentiel, il y a quelque temps.)
Une page aléatoire de 15 × 15 puzzles durs ( 5057541 , 5122197 , 5383030 , 6275294 , 6646970 , 6944232 ):
15,15 1,5,1 3,9,1 5,4,2 1,6,2 2,11,2 2,2,3 3,9,3 2,4,4 1,10,4 5,12,4 3,1,5 1,3,5 3,8,5 1,13,5 5,5,6 1,12,6 1,2,8 2,9,8 1,1,9 2,6,9 6,11,9 3,13,9 5,2,10 2,4,10 4,10,10 1,5,11 2,12,11 2,3,12 2,8,12 5,10,12 1,5,13 1,9,13 1,6,14 1,8,14
15,15 4,2,0 2,5,0 1,3,1 2,14,2 1,3,3 2,11,3 1,13,3 1,5,4 11,7,4 1,9,4 1,4,5 1,8,5 2,10,5 12,14,5 3,5,6 1,4,7 2,10,7 3,9,8 4,0,9 1,4,9 1,6,9 3,10,9 1,5,10 1,7,10 8,9,10 1,1,11 10,3,11 2,11,11 6,0,12 1,11,13 2,9,14 1,12,14
15,15 2,2,0 8,10,0 2,3,1 2,14,2 2,3,3 3,5,3 3,9,3 2,11,3 5,13,3 6,0,4 3,7,4 3,3,5 2,11,5 2,6,6 1,8,6 1,4,7 2,10,7 1,6,8 2,8,8 5,3,9 2,11,9 2,7,10 7,14,10 2,1,11 4,3,11 2,5,11 1,9,11 2,11,11 2,0,12 4,6,13 1,11,13 3,4,14 1,12,14
15,15 2,0,0 2,4,0 3,6,1 2,10,1 1,13,1 2,5,2 2,12,2 3,0,3 2,2,3 4,7,3 2,9,3 1,14,3 1,4,4 1,8,4 2,12,5 4,2,6 3,4,6 1,14,6 7,7,7 1,10,8 2,12,8 3,2,9 2,14,9 2,0,10 2,6,10 1,10,10 2,5,11 4,7,11 2,12,11 1,14,11 3,2,12 3,9,12 1,1,13 2,4,13 3,8,13 2,10,14 5,14,14
15,15 1,3,0 1,14,0 3,7,1 3,10,1 2,13,1 3,1,2 4,5,2 2,12,3 3,3,4 1,8,4 1,1,5 3,5,5 1,9,5 5,13,5 3,3,6 1,8,6 2,2,7 2,12,7 1,6,8 1,8,8 2,11,8 2,1,9 4,5,9 2,9,9 2,13,9 2,6,10 4,11,10 1,2,11 3,9,12 2,13,12 3,1,13 2,4,13 3,7,13 1,0,14
15,15 2,8,0 2,4,1 2,7,1 1,10,1 6,4,3 1,1,4 12,5,4 3,11,4 5,13,4 3,10,5 3,0,6 1,6,6 2,8,6 4,13,7 2,3,8 1,6,8 3,8,8 2,14,8 2,4,9 5,1,10 4,3,10 1,9,10 6,13,10 3,8,11 1,10,11 3,4,13 2,7,13 3,10,13 1,6,14 1,14,14
Une page aléatoire de 20 × 20 puzzles normaux ( 536628 , 3757659 ):
20,20 1,0,0 3,2,0 2,6,0 1,13,0 3,9,1 3,15,1 2,7,2 3,13,2 3,0,3 2,3,3 3,18,3 3,5,4 2,9,4 2,11,4 2,16,4 1,0,5 2,7,5 1,10,5 1,19,5 3,2,6 1,11,6 2,17,6 2,0,7 3,4,7 5,6,7 2,9,7 4,13,7 3,15,7 1,3,8 1,10,8 1,14,9 2,18,9 3,1,10 2,4,10 1,8,10 1,10,10 3,12,10 3,16,10 1,9,11 1,17,11 2,19,11 2,0,12 2,2,12 1,4,12 4,6,12 2,13,12 2,15,12 1,14,13 2,17,13 1,3,14 2,5,14 4,7,14 2,15,14 3,0,15 1,2,15 2,13,15 3,18,15 3,7,16 7,10,16 1,17,16 2,0,17 2,3,17 2,5,17 3,11,17 3,15,17 1,0,19 1,2,19 1,4,19 2,6,19 5,8,19 1,11,19 1,13,19 3,15,19 2,18,19
20,20 1,0,0 1,4,0 5,8,0 1,17,0 1,19,0 2,17,2 3,6,3 2,10,3 2,12,3 4,14,3 6,0,4 3,4,4 4,7,4 1,11,4 1,18,4 1,6,5 3,12,5 4,15,5 4,4,6 2,16,6 2,19,6 6,0,7 3,10,7 2,12,8 2,17,8 3,3,9 2,5,9 4,8,9 2,10,9 3,0,10 1,2,10 5,14,10 2,16,10 2,19,10 7,7,11 3,12,12 2,17,12 2,2,13 4,4,13 3,6,13 4,14,13 3,0,14 1,3,14 1,5,14 3,16,14 1,2,15 1,9,15 2,11,15 5,13,15 3,19,15 1,4,16 3,6,16 1,3,17 1,12,17 1,14,17 1,16,17 6,0,19 2,2,19 3,5,19 2,7,19 5,9,19 1,11,19 2,13,19 1,15,19 4,17,19