C #, 530 octets
Programme C # complet, prend l'entrée en une seule ligne de STDIN et sort une seule ligne vers STDOUT, avec un "" de fin.
C'est assez long ... et a beaucoup trop de répétitions x / y / z, mais je n'ai pas été en mesure de le réduire à quelque chose de sensé jusqu'à présent, et passer un examen dans 2 heures, pourrait y revenir demain.
using Q=System.Console;class P{static void Main(){int q=9,w=0,e=9,r=0,t=9,u=0,i=0,x=0,y=0,z=0,p=0;System.Action V=()=>{z=(int)System.Math.Sqrt(i);p=(x=i-z*z)%2;x/=2;y=(++z*z--+~i)/2;},W=()=>{Q.Write(i+","+(x<0|y++<0|z>7?"X":""+(z*z+2*x+1-p))+" ");};foreach(var g in Q.ReadLine().Split(',')){i=int.Parse(g);V();q=q>x?x:q;w=w<x?x:w;e=e>y?y:e;r=r<y?y:r;t=t>z?z:t;u=u<z?z:u;}for(i=64;i-->0;){V();if(!(x<q|x>w|y<e|y>r|z<t|z>u))if(p>0){if(y==r)W();if(x++==w)W();x--;if(z--==t)W();}else{if(y--==e)W();if(x--==q)W();x++;if(z++==u)W();}}}}
Ce diagramme explique la plupart de ce qui se passe.
Reconnaissez que parce que nous ne pouvons pas avoir de sections de largeur 0, un "hexagone" sera toujours la forme la moins chère (et a l'avantage de donner aux oies le maximum d'espace pour se déplacer).
Le programme fonctionne en traduisant d'abord tous les indices de cellule d'entrée en coordonnées x / y / z et en trouvant le min / max de chacun des x / y / z.
z = floor(root(i))
x = floor((i - z^2) / 2)
y = floor((z+1)^2 - i - 1) / 2)
p = (i - z^2) % 2
Ensuite, il passe par chaque index de cellule, et vérifie s'il s'inscrit dans la limite «hexagonale» que nous avons décrite. Si c'est le cas, il vérifie s'il se trouve sur l'un des bords extrêmes des limites (c'est-à-dire x = xmin ou y = ymax) et ajoute les bords correspondants si c'est le cas. Il doit déterminer l'indice du bord à côté duquel il se trouve. Pour x et z, nous les incrémentons / décrémentons comme nous le voulons, puis utilisons la formule suivante:
i = z^2 + 2*x + (1-p)
Notez que la "parité" change toujours et que y n'est pas impliqué. Pour y, nous n'avons rien à changer, mais le code est un peu désordonné car il doit effectuer des vérifications de limites "triangulaires" pour détecter si la cellule voisine doit être un "X" ou non.
Exemple de solution (cellules avec des oies venant des trois coins):
Input
2,50,62
Output
62,63 61,X 59,X 57,X 55,X 53,X 51,X 50,49 48,X 36,X 35,X 25,X 24,X 16,X 15,X 9,X 8,X 4,X 3,X 2,0 1,X
Code plus ordonné avec commentaires:
using Q=System.Console;
class P
{
static void Main()
{
int q=9,w=0,e=9,r=0,t=9,u=0, // min/max x/y/z/ (init min high, and max low)
i=0, // index of cell we are looking at
x=0,y=0,z=0,p=0; // x,y,z dimension
System.Action V=()=>
{ // translates the index into x/y/z/p
z=(int)System.Math.Sqrt(i);
p=(x=i-z*z)%2; // 'parity'
x/=2; // see p assignment
y=(++z*z--+~i)/2; // ~i == -i - 1
},
W=()=>
{ // writes out the edge of i, and the cell described by x/z/inverse of p (the inversion of p handles y +/-)
Q.Write(i+","+ // write out the edge
(x<0|y++<0|z>7?"X":""+(z*z+2*x+1-p)) // either X (if we go out of 'trianlge' bounds), or we translate x/z/inverse of p into an index
+" "); // leaves a trailing space (as shown in example output)
};
foreach(var g in Q.ReadLine().Split(',')) // for each cell with geese
{
i=int.Parse(g); // grab index of cell
V(); // compute x/y/z/p
q=q>x?x:q; // sort out mins/maxes
w=w<x?x:w;
e=e>y?y:e;
r=r<y?y:r;
t=t>z?z:t;
u=u<z?z:u;
// code like the above suggests a solution with a couple of arrays would be better...
// I've not had success with that yet, but maybe in a couple of days I will try again
}
for(i=64;i-->0;) // for each cell
{
V(); // compute x/y/z/p
if(!(x<q|x>w|y<e|y>r|z<t|z>u)) // if we are inside the 'hex' bounds
if(p>0)
{ // x max, y max, z min
// these checks check that we are on the extremes of the 'hex' bounds,
// and set up the appropriate vars for W calls to put the edges in
// must do y first, because W modifies it for us (saves 2 bytes in the next block)
if(y==r) // don't need the ++ (can't go out of 'trianlge' bounds)
W();
if(x++==w)
W();
x--;
if(z--==t)
W();
//z++; not used again
}
else
{ // x min, y min, z max
if(y--==e) // do need the -- (used for 'trianlge' bounds checking)
W();
// y is reset in W, as such
if(x--==q)
W();
x++;
if(z++==u)
W();
//z--; not used again
}
}
}
}