Python 3, n≈40
def plausible_suffix(l,N):
if sum(l)>N:
return False
pairs = [(N-1-i,l[i]) for i in range(len(l))]
if sum(i*x for i,x in pairs)>N:
return False
num_remaining = N - len(l)
for index, desired_count in pairs:
count = l.count(index)
more_needed = desired_count - count
if more_needed<0:
return False
num_remaining -= more_needed
if num_remaining<0:
return False
return True
plausible_func = plausible_suffix
def generate_magic(N):
l=[0]
while l:
extend = False
if plausible_func(l,N):
if len(l)==N:
yield l[::-1]
else:
extend = True
if extend:
l.append(0)
else:
while l[-1]>=N-2:
l.pop(-1)
if not l:raise StopIteration
l[-1]+=1
n=40 #test parameter
if n>0:
for x in generate_magic(n):
print(n,x)
Effectue une recherche en premier des listes possibles, remplit les entrées de droite à gauche, arrête la recherche à un suffixe si elle n'est pas plausible, ce qui peut se produire si:
- La somme des entrées du suffixe dépasse
n
(la somme de la liste entière doit être n
)
- La somme pondérée de
i*l[i]
dans le suffixe dépasse n
(la somme pour la liste entière doit être n
)
- Tout nombre apparaît dans le suffixe plus de fois que le suffixe indique qu'il devrait
- Le nombre de places non remplies restantes est trop petit pour tenir compte de tous les nombres qui doivent apparaître plusieurs fois.
J'avais des préfixes testés d'origine de gauche à droite, mais cela s'est fait plus lentement.
Les sorties jusqu'à n=30
sont les suivantes:
4 [1, 2, 1, 0]
4 [2, 0, 2, 0]
5 [2, 1, 2, 0, 0]
7 [3, 2, 1, 1, 0, 0, 0]
8 [4, 2, 1, 0, 1, 0, 0, 0]
9 [5, 2, 1, 0, 0, 1, 0, 0, 0]
10 [6, 2, 1, 0, 0, 0, 1, 0, 0, 0]
11 [7, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0]
12 [8, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0]
13 [9, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
14 [10, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
15 [11, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
16 [12, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
17 [13, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
18 [14, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
19 [15, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
20 [16, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
21 [17, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
22 [18, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
23 [19, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
24 [20, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
25 [21, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
26 [22, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
27 [23, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
28 [24, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
29 [25, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
30 [26, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
À l'exception des trois premières listes [1, 2, 1, 0], [2, 0, 2, 0], [2, 1, 2, 0, 0]
, il y a exactement une liste de chaque longueur n>6
et elle a la forme [n-4, 2, 1, ..., 0, 0, 1, 0, 0, 0]
. Ce schéma persiste jusqu'à au moins n=50
. Je soupçonne que cela tient pour toujours, auquel cas il est trivial d'en afficher un grand nombre. Même si ce n'est pas le cas, une compréhension mathématique des solutions possibles accélérerait considérablement la recherche.