Combinateur quines


9

Contexte

Vous venez d'apprendre ce qu'est la logique combinatoire . Intrigué par les différents combinateurs, vous passez un peu de temps à les découvrir. Vous tombez enfin sur cette expression particulière:

(S I I (S I I))

Vous remarquez que lorsque vous essayez de le réduire à sa forme normale, il se réduit à lui-même après trois étapes:

(S I I (S I I))
= (I (S I I) (I (S I I)))  (1)
= (S I I (I (S I I)))      (2)
= (S I I (S I I))          (3)

Vous êtes déterminé à trouver d'autres expressions qui partagent ce trait et à commencer à y travailler immédiatement.

Règles

  • Vous pouvez utiliser n'importe quelle combinaison des combinateurs suivants:

    B f g x = f (g x)
    C f x y = f y x
    I x     = x
    K x y   = x
    S f g x = f x (g x)
    W f x   = f x x
    
  • L'application est laissée associative, ce qui signifie que (S K K)c'est effectivement le cas ((S K) K).

  • Une réduction est minime, il n'y a pas d'autre ordre d'étapes de réduction qui utilise moins d'étapes. Exemple: si xa réduction y, alors la réduction minimale correcte de (W f x)est:

    (W f x)
    = (W f y) (1)
    = f y y   (2)
    

    et pas

    (W f x)
    = f x x   (1)
    = f y x   (2)
    = f y y   (3) 
    
  • Des échappatoires standard s'appliquent.

Tâche

Nous définissons le cycle d'une expression comme étant le nombre minimal de réductions entre deux mêmes expressions.

Votre tâche consiste à trouver l'expression, avec le nombre de combinateurs utilisés <100, qui produit le cycle le plus long.

Notation

Votre score sera déterminé par la durée du cycle de votre expression. Si l'expression de deux personnes a le même cycle, la réponse qui utilise moins de combinateurs l'emporte. S'ils utilisent tous les deux le même nombre de combinateurs, la réponse précédente l'emporte.

Bonne chance et amusez-vous bien!


atomic-code-golf conviendrait à votre casse-cravate, mais je n'ajouterais pas de balise pour le casse-cravate. S'il n'y a pas de balise appropriée, la valeur par défaut est code-challenge , ce qui indique que le défi utilise un critère de gain personnalisé.
Martin Ender

Je pense que cela aiderait si vous disiez quelles conventions d'associativité votre notation utilise.
xnor

Le cycle tel que vous l'avez défini n'est pas nécessairement bien défini, car une expression donnée peut avoir plusieurs réductions disponibles.
Peter Taylor

@ThreeFx, vous vous trompez. Par exemple, si xa une réduction jusque- yW f x -> W f y -> f y you W f x -> f x x -> f x y -> f y ysont de longueurs différentes.
Peter Taylor

4
Maintenant, la chose délicate est que quelqu'un ne peut pas réclamer un score simplement en affichant un cycle; ils ont besoin d'une preuve qu'il n'y a pas de réduction plus courte, ce qui pourrait être difficile à calculer.
xnor

Réponses:


7

Je dois commencer par quelque chose

1:(((C (C I) (W I)) (C (C I) (W I)) I I) (W I) (W (C I) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

2:(((C I (C (C I) (W I))) (W I) I I) (W I) ((C I) (W (C I)) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

3:(((I (W I)) (C (C I) (W I)) I I) (W I) (I (W (C I)) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

4:(((W I) (C (C I) (W I)) I I) (W I) (W (C I) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

5:(((I (C (C I) (W I))) (C (C I) (W I)) I I) (W I) ((C I) (W (C I)) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

6:(((C (C I) (W I)) (C (C I) (W I)) I I) (W I) (I (W (C I)) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

7:(((C I (C (C I) (W I))) (W I) I I) (W I) (W (C I) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

8:(((I (W I)) (C (C I) (W I)) I I) (W I) ((C I) (W (C I)) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

9:(((W I) (C (C I) (W I)) I I) (W I) (I (W (C I)) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

10:(((I (C (C I) (W I))) (C (C I) (W I)) I I) (W I) (W (C I) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

11:(((C (C I) (W I)) (C (C I) (W I)) I I) (W I) ((C I) (W (C I)) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

12:(((C I (C (C I) (W I))) (W I) I I) (W I) (I (W (C I)) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

13:(((I (W I)) (C (C I) (W I)) I I) (W I) (W (C I) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

14:(((W I) (C (C I) (W I)) I I) (W I) ((C I) (W (C I)) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

15:(((I (C (C I) (W I))) (C (C I) (W I)) I I) (W I) (I (W (C I)) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

16:(((C (C I) (W I)) (C (C I) (W I)) I I) (W I) (W (C I) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

17:(((C I (C (C I) (W I))) (W I) I I) (W I) ((C I) (W (C I)) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

18:(((I (W I)) (C (C I) (W I)) I I) (W I) (I (W (C I)) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

19:(((W I) (C (C I) (W I)) I I) (W I) (W (C I) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

20:(((I (C (C I) (W I))) (C (C I) (W I)) I I) (W I) ((C I) (W (C I)) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

21:(((C (C I) (W I)) (C (C I) (W I)) I I) (W I) (I (W (C I)) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

22:(((C I (C (C I) (W I))) (W I) I I) (W I) (W (C I) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

23:(((I (W I)) (C (C I) (W I)) I I) (W I) ((C I) (W (C I)) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

24:(((W I) (C (C I) (W I)) I I) (W I) (I (W (C I)) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

25:(((I (C (C I) (W I))) (C (C I) (W I)) I I) (W I) (W (C I) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

26:(((C (C I) (W I)) (C (C I) (W I)) I I) (W I) ((C I) (W (C I)) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

27:(((C I (C (C I) (W I))) (W I) I I) (W I) (I (W (C I)) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

28:(((I (W I)) (C (C I) (W I)) I I) (W I) (W (C I) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

29:(((W I) (C (C I) (W I)) I I) (W I) ((C I) (W (C I)) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))

30:(((I (C (C I) (W I))) (C (C I) (W I)) I I) (W I) (I (W (C I)) (W (C I)) (W (C I))) ((W I) (W I) (W I) I))

31:(((C (C I) (W I)) (C (C I) (W I)) I I) (W I) (W (C I) (W (C I)) (W (C I))) ((I (W I)) (W I) (W I) I))
En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.