Trouvez la prime la plus astucieuse


9

Intro

Considérons le processus consistant à prendre un entier positif n dans une base b et à remplacer chaque chiffre par sa représentation dans la base du chiffre à droite.

  • Si le chiffre à droite est un 0, utilisez la base b .
  • Si le chiffre à droite est un 1, utilisez unaire avec 0 comme marque de pointage.
  • S'il n'y a pas de chiffre à droite (c'est-à-dire que vous êtes à la place), faites une boucle vers le chiffre le plus significatif.

À titre d'exemple, n = 160 et b = 10. L'exécution du processus ressemble à ceci:

The first digit is 1, the digit to the right is 6, 1 in base 6 is 1.
The next digit is 6, the digit to the right is 0, 0 is not a base so use b, 6 in base b is 6.
The last digit is 0, the digit to the right (looping around) is 1, 0 in base 1 is the empty string (but that's ok).

Concatenating '1', '6', and '' together gives 16, which is read in the original base b = 10.

La même procédure exacte mais se déplaçant vers la gauche au lieu de la droite peut également être effectuée:

The first digit is 1, the digit to the left (looping around) is 0, 0 is not a base so use b, 1 in base b is 1.
The next digit is 6, the digit to the left is 1, 6 in base 1 is 000000.
The last digit is 0, the digit to the left is 6, 0 in base 6 is 0.

Concatenating '1', '000000', and '0' together gives 10000000, which is read in the original base b = 10.

Ainsi, nous avons fait deux nombres liés à 160 (pour b = 10): 16 et 10000000.

Nous définirons n comme un nombre astucieux s'il divise également au moins l'un des deux nombres générés dans ce processus en 2 parties ou plus.

Dans l'exemple n est astucieux car 160 divise 10000000 exactement 62500 fois.

203 n'est PAS astucieux car les chiffres résultants sont 2011 et 203 lui-même, qui 203 ne peuvent pas se répartir uniformément en 2 fois ou plus.

Défi

(Pour le reste du problème, nous ne considérerons que b = 10.)

Le défi est d'écrire un programme qui trouve le plus haut nombre astucieux qui est également premier.

Les 7 premiers nombres premiers astucieux (et tout ce que j'ai trouvé jusqu'à présent) sont:

2
5
3449
6287
7589
9397
93557 <-- highest so far (I've searched to 100,000,000+)

Je ne suis pas officiellement certain qu'il en existe d'autres, mais je m'attends à ce qu'ils existent. Si vous pouvez prouver qu'il y en a (ou qu'il n'y en a pas) en nombre fini, je vous donnerai +200 représentants de primes.

Le gagnant sera la personne qui peut fournir le plus haut astuce astucieux, à condition qu'il soit évident qu'ils ont été actifs dans la recherche et ne prennent pas intentionnellement la gloire des autres.

Règles

  • Vous pouvez utiliser tous les outils de recherche de choix que vous souhaitez.
  • Vous pouvez utiliser des testeurs principaux probabilistes.
  • Vous pouvez réutiliser le code d' autres personnes avec attribution . Il s'agit d'un effort commun. Les tactiques acharnées ne seront pas tolérées.
  • Votre programme doit rechercher activement le premier. Vous pouvez commencer votre recherche au plus haut astucieux astuce connu.
  • Votre programme devrait être capable de calculer tous les nombres premiers astucieux connus dans les 4 heures suivant les instances d' Amazon EC2 t2.medium (soit quatre à la fois, soit une pendant quatre heures ou quelque chose entre les deux). Je ne vais pas vraiment le tester sur eux et vous n'avez certainement pas besoin de le faire. Ceci est juste une référence.

Voici mon code Python 3 que j'ai utilisé pour générer le tableau ci-dessus: (s'exécute dans une seconde ou deux)

import pyprimes

def toBase(base, digit):
    a = [
            ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'],
            ['', '0', '00', '000', '0000', '00000', '000000', '0000000', '00000000', '000000000' ],
            ['0', '1', '10', '11', '100', '101', '110', '111', '1000', '1001'],
            ['0', '1', '2', '10', '11', '12', '20', '21', '22', '100'],
            ['0', '1', '2', '3', '10', '11', '12', '13', '20', '21'],
            ['0', '1', '2', '3', '4', '10', '11', '12', '13', '14'],
            ['0', '1', '2', '3', '4', '5', '10', '11', '12', '13'],
            ['0', '1', '2', '3', '4', '5', '6', '10', '11', '12'],
            ['0', '1', '2', '3', '4', '5', '6', '7', '10', '11'],
            ['0', '1', '2', '3', '4', '5', '6', '7', '8', '10']
        ]
    return a[base][digit]

def getCrafty(start=1, stop=100000):
    for p in pyprimes.primes_above(start):
        s = str(p)
        left = right = ''
        for i in range(len(s)):
            digit = int(s[i])
            left += toBase(int(s[i - 1]), digit)
            right += toBase(int(s[0 if i + 1 == len(s) else i + 1]), digit)
        left = int(left)
        right = int(right)
        if (left % p == 0 and left // p >= 2) or (right % p == 0 and right // p >= 2):
            print(p, left, right)
        if p >= stop:
            break
    print('DONE')

getCrafty()

Je pense que faire 0 dans n'importe quelle base x pour être la chaîne vide serait plus mathématique. En outre, je suis sûr qu'il serait plus facile de prouver ou d'infirmer cette version
fier haskeller

Réponses:


7

Mathematica, trouve 93 557 en 0,3 s (pas d'autres nombres premiers astucieux en dessous de 2 * 10 10 )

Ceci est juste une recherche exhaustive naïve à travers tous les nombres premiers. Pour commencer, il vérifie environ 1 000 000 de nombres premiers toutes les 55 secondes (ce qui est appelé à ralentir à mesure que les nombres premiers augmentent).

J'utilise un tas de fonctions d'assistance:

lookup = {
  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
  {{}, 0, {0, 0}, {0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, 
   {0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0}},
  {0, 1, {1, 0}, {1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}, {1, 0, 0, 0}, 
   {1, 0, 0, 1}},
  {0, 1, 2, {1, 0}, {1, 1}, {1, 2}, {2, 0}, {2, 1}, {2, 2}, {1, 0, 0}},
  {0, 1, 2, 3, {1, 0}, {1, 1}, {1, 2}, {1, 3}, {2, 0}, {2, 1}},
  {0, 1, 2, 3, 4, {1, 0}, {1, 1}, {1, 2}, {1, 3}, {1, 4}},
  {0, 1, 2, 3, 4, 5, {1, 0}, {1, 1}, {1, 2}, {1, 3}},
  {0, 1, 2, 3, 4, 5, 6, {1, 0}, {1, 1}, {1, 2}},
  {0, 1, 2, 3, 4, 5, 6, 7, {1, 0}, {1, 1}},
  {0, 1, 2, 3, 4, 5, 6, 7, 8, {1, 0}}
};
convertBase[d_, b_] := lookup[[b + 1, d + 1]];
related[n_] := (
   d = IntegerDigits[n];
   {FromDigits[Flatten[convertBase @@@ Transpose[{d, RotateRight@d}]]],
    FromDigits[Flatten[convertBase @@@ Transpose[{d, RotateLeft@d}]]]}
);
crafty[n_] := (
   {ql, qr} = related[n]/n;
   IntegerQ[ql] && ql > 1 || IntegerQ[qr] && qr > 1
);

Et puis cette boucle fait la recherche réelle:

p = 2;
start = TimeUsed[];
i = 1;
While[True,
 If[crafty[p], Print@{"CRAFTY PRIME:", p, TimeUsed[] - start}];
 p = NextPrime@p;
 If[Mod[++i, 1000000] == 0, 
  Print[{"Last prime checked:", p, TimeUsed[] - start}]
 ]
]

Je continuerai à mettre à jour le message, si je trouve des nombres premiers ou que je peux penser à des optimisations.

Il vérifie actuellement tous les nombres premiers jusqu'à 100 000 000 en environ 5,5 minutes.

Edit: j'ai décidé de suivre l'exemple de l'OP et suis passé à une table de recherche pour la conversion de base. Cela a donné une accélération d'environ 30%.

Numéros astucieux en général

J'arrête maintenant ma recherche de nombres premiers astucieux, car il me faudrait plusieurs jours pour rattraper le retard de la réponse Perl. Au lieu de cela, j'ai commencé à chercher tous les numéros astucieux. Peut-être que leur distribution aide à trouver une preuve que le nombre de nombres premiers astucieux est fini ou infini.

Je définis les nombres rusés à droite ceux qui divisent le nombre connexe obtenu en interprétant le chiffre à droite comme la nouvelle base, et les nombres rusés à gauche en conséquence. Il sera probablement utile de les aborder individuellement pour une preuve.

Voici tous les numéros de gauche jusqu'à 2 210 000 000:

{2, 5, 16, 28, 68, 160, 222, 280, 555, 680, 777, 1600, 2605, 2800, 
 6800, 7589, 7689, 9397, 9777, 16000, 16064, 16122, 22222, 24682, 
 26050, 28000, 55555, 68000, 75890, 76890, 93557, 160000, 160640, 
 161220, 247522, 254408, 260500, 280000, 680000, 758900, 768900, 
 949395, 1600000, 1606400, 1612200, 2222222, 2544080, 2605000, 
 2709661, 2710271, 2717529, 2800000, 3517736, 5555555, 6800000, 
 7589000, 7689000, 9754696, 11350875, 16000000, 16064000, 16122000,
 25440800, 26050000, 27175290, 28000000, 28028028, 35177360, 52623721, 
 68000000, 68654516, 75890000, 76890000, 113508750, 129129129, 160000000,
 160640000, 161220000, 222222222, 254408000, 260500000, 271752900,
 275836752, 280000000, 280280280, 333018547, 351773600, 370938016, 
 555555555, 680000000, 758900000, 768900000, 777777777, 877827179, 
 1135087500, 1291291290, 1600000000, 1606400000, 1612200000, 1944919449}

Et voici tous les numéros judicieux de cette gamme:

{2, 5, 16, 28, 68, 125, 128, 175, 222, 284, 555, 777, 1575, 1625, 
 1875, 3449, 5217, 6287, 9375, 14625, 16736, 19968, 22222, 52990, 
 53145, 55555, 58750, 93750, 127625, 152628, 293750, 529900, 587500, 
 593750, 683860, 937500, 1034375, 1340625, 1488736, 2158750, 2222222, 
 2863740, 2937500, 5299000, 5555555, 5875000, 5937500, 6838600, 
 7577355, 9375000, 12071125, 19325648, 21587500, 28637400, 29375000, 
 29811250, 42107160, 44888540, 52990000, 58750000, 59375000, 68386000, 
 71461386, 74709375, 75773550, 93750000, 100540625, 116382104,
 164371875, 197313776, 207144127, 215875000, 222222222, 226071269,
 227896480, 274106547, 284284284, 286374000, 287222080, 293750000, 
 298112500, 421071600, 448885400, 529900000, 555555555, 587500000, 
 593750000, 600481125, 683860000, 714613860, 747093750, 757735500, 
 769456199, 777777777, 853796995, 937500000, 1371513715, 1512715127, 
 1656354715, 1728817288, 1944919449, 2158750000}

Notez qu'il existe un nombre infini de nombres de gauche et de droite, car il existe plusieurs façons de les générer à partir de ceux existants:

  • On peut ajouter un nombre arbitraire de 0s à tout nombre rusé de gauche dont le chiffre le moins significatif est supérieur à son chiffre le plus significatif pour obtenir un autre nombre rusé de gauche.
  • De même, on peut ajouter un nombre arbitraire de 0s à n'importe quel nombre de droite dont le chiffre le moins significatif est inférieur à son chiffre le plus significatif. Ceci (et la déclaration précédente) est dû au fait que le 0sera ajouté à la fois au numéro astucieux et à son numéro associé, multipliant efficacement les deux par 10.
  • Chaque nombre impair de 2s ou 5s est astucieux.
  • Chaque nombre impair de 777s est astucieux.
  • Il semble qu'un nombre impair de 28joints par 0s, comme 28028028soit toujours gauche-astucieux.

Autres choses à noter:

  • Il y a au moins quatre nombres à 10 chiffres qui se composent de deux nombres à cinq chiffres répétés (qui ne sont pas eux-mêmes astucieux, mais il peut y avoir un schéma ici de toute façon).
  • Il y a beaucoup de nombres astucieux qui sont un multiple de 125. Il pourrait être utile de les étudier pour trouver une autre règle de production.
  • Je n'ai pas trouvé de numéro astucieux qui commence par 4 ou se termine par 3.
  • Les numéros de droite peuvent commencer par n'importe quel chiffre, mais je n'ai pas trouvé de numéro de droite finissant par 1 ou 3.

Je suppose que cette liste serait plus intéressante si j'omis ceux dont l'existence est impliquée par un plus petit nombre rusé, d'autant plus que ce ne sont jamais des nombres premiers selon les règles de construction découvertes jusqu'à présent. Voici donc tous les nombres astucieux qui ne peuvent pas être construits avec l'une des règles ci-dessus:

Left-crafty:
{16, 68, 2605, 7589, 7689, 9397, 9777, 16064, 16122, 24682, 
 93557, 247522, 254408, 949395, 2709661, 2710271, 2717529, 3517736,
 9754696, 11350875, 52623721, 68654516, 129129129, 275836752, 
 333018547, 370938016, 877827179, 1944919449}

Right-crafty:
{16, 28, 68, 125, 128, 175, 284, 1575, 1625, 1875, 3449, 5217, 
 6287, 9375, 14625, 16736, 19968, 52990, 53145, 58750, 127625, 
 152628, 293750, 593750, 683860, 1034375, 1340625, 1488736, 2158750,
 2863740, 7577355, 12071125, 19325648, 29811250, 42107160, 44888540,
 71461386, 74709375, 100540625, 116382104, 164371875, 197313776,
 207144127, 226071269, 227896480, 274106547, 284284284, 287222080, 
 600481125, 769456199, 853796995, 1371513715, 1512715127, 1656354715, 
 1728817288, 1944919449}

Notez également qu'il existe quelques nombres doublement astucieux (ceux qui apparaissent dans les deux listes et divisent donc les deux nombres liés):

{2, 5, 16, 28, 68, 222, 555, 777, 22222, 55555, 2222222, 5555555, 1944919449}

Il en existe également une infinité. Mais comme vous pouvez le voir, à l'exception de 16, ceux 28- 68ci ne sont tous composés que d'un seul chiffre (répété). Il serait également intéressant de prouver si des nombres plus importants peuvent être doublement astucieux sans avoir cette propriété, mais cela pourrait simplement disparaître comme corollaire d'une preuve pour des nombres individuellement astucieux. J'ai trouvé le contre-exemple 1944919449.


Y a-t-il une raison que vous avez 100540625, 100540625dans votre liste astucieuse?
isaacg

1
@isaacg oui. parce que je ne peux pas copier et coller.
Martin Ender

Accepter cela car personne n'a trouvé de nombres premiers astucieux au-delà de 93 557. Ce fut la première réponse, est le plus voté et va dans le plus profond.
Les loisirs de Calvin le

6

Perl (1e5 en 0,03s, 1e8 en 21s). Max 93557 à 1e11.

Très similaire à l'original. Les changements incluent:

  • transposer la recherche de base. Petites économies en fonction de la langue.
  • modifiez le décalage à droite incrémenté au lieu de if. Micro-option dépendante de la langue.
  • utilisez Math :: GMPz car Perl 5 n'a pas de bigintels auto-magiques comme Python et Perl 6.
  • Utilisez 2s <= gauche au lieu de int (gauche / s)> = 2. Décalage entier natif vs. division bigint.

Est-ce que le premier 1e8 s'amorce en 21 secondes sur ma machine rapide, 3,5 minutes pour 1e9, 34 minutes pour 1e10. Je suis un peu surpris qu'il soit plus rapide que le code Python pour les petites entrées. Nous pourrions paralléliser (le nouveau Pari / GP parforprimeserait bien pour cela). Puisqu'il s'agit d'une recherche, nous pouvons paralléliser à la main, je suppose ( forprimespeut prendre deux arguments). forprimesest fondamentalement comme Pari / GP forprime- il effectue des tamis segmentés en interne et appelle le bloc avec chaque résultat. C'est pratique, mais pour ce problème, je ne pense pas que ce soit un domaine de performance.

#!/usr/bin/env perl
use warnings;
use strict;
use Math::Prime::Util qw/forprimes/;
use Math::GMPz;

my @rbase = (
  [   0,"",       0,   0,  0, 0, 0, 0, 0, 0],
  [qw/1 0         1    1   1  1  1  1  1  1/],
  [qw/2 00        10   2   2  2  2  2  2  2/],
  [qw/3 000       11   10  3  3  3  3  3  3/],
  [qw/4 0000      100  11  10 4  4  4  4  4/],
  [qw/5 00000     101  12  11 10 5  5  5  5/],
  [qw/6 000000    110  20  12 11 10 6  6  6/],
  [qw/7 0000000   111  21  13 12 11 10 7  7/],
  [qw/8 00000000  1000 22  20 13 12 11 10 8/],
  [qw/9 000000000 1001 100 21 14 13 12 11 10/],
);

my($s,$left,$right,$slen,$i,$barray);
forprimes {
  ($s,$slen,$left,$right) = ($_,length($_),'','');
  foreach $i (0 .. $slen-1) {
    $barray = $rbase[substr($s,$i,1)];
    $left  .= $barray->[substr($s,$i-1,1)];
    $right .= $barray->[substr($s,($i+1) % $slen,1)];
  }
  $left = Math::GMPz::Rmpz_init_set_str($left,10) if length($left) >= 20;
  $right = Math::GMPz::Rmpz_init_set_str($right,10) if length($right) >= 20;
  print "$s      $left $right\n" if (($s<<1) <= $left && $left % $s == 0)
                                 || (($s<<1) <= $right && $right % $s == 0);
} 1e9;

5

C ++ 11, avec threads et GMP

Timing (sur un MacBook Air):

  • 4 fils
    • 10 ^ 8 en 2.18986s
    • 10 ^ 9 en 21.3829s
    • 10 ^ 10 en 421.392s
    • 10 ^ 11 en 2557.22s
  • 1 fil
    • 10 ^ 8 en 3.95095s
    • 10 ^ 9 en 37.7009s

Exigences:

#include <vector>
#include <iostream>
#include <chrono>
#include <cmath>
#include <future>
#include <mutex>
#include <atomic>
#include "primesieve.hpp"
#include "gmpxx.h"

using namespace std;

using ull = unsigned long long;

mutex cout_mtx;
atomic<ull> prime_counter;


string ppnum(ull number) {
    if (number == 0) {
        return "0 * 10^0";
    }
    else {
        int l = floor(log10(number));
        return to_string(number / pow(10, l)) + " * 10^" + to_string(int(l));
    }
}


inline void bases(int& base, int& digit, mpz_class& sofar) {
    switch (base) {
        case 0:
            sofar *= 10;
            sofar += digit;
            break;
        case 1:
            sofar *= pow(10, digit);
            break;
        case 2:
            switch (digit) {
                case 0: sofar *= 10; break;
                case 1: sofar *= 10; sofar += 1; break;
                case 2: sofar *= 100; sofar += 10; break;
                case 3: sofar *= 100; sofar += 11; break;
                case 4: sofar *= 1000; sofar += 100; break;
                case 5: sofar *= 1000; sofar += 101; break;
                case 6: sofar *= 1000; sofar += 110; break;
                case 7: sofar *= 1000; sofar += 111; break;
                case 8: sofar *= 10000; sofar += 1000; break;
                case 9: sofar *= 10000; sofar += 1001; break;
            }
            break;
        case 3:
            switch (digit) {
                case 0: sofar *= 10; break;
                case 1: sofar *= 10; sofar += 1; break;
                case 2: sofar *= 10; sofar += 2; break;
                case 3: sofar *= 100; sofar += 10; break;
                case 4: sofar *= 100; sofar += 11; break;
                case 5: sofar *= 100; sofar += 12; break;
                case 6: sofar *= 100; sofar += 20; break;
                case 7: sofar *= 100; sofar += 21; break;
                case 8: sofar *= 100; sofar += 22; break;
                case 9: sofar *= 1000; sofar += 100; break;
            }
            break;
        case 4:
            switch (digit) {
                case 0: sofar *= 10; break;
                case 1: sofar *= 10; sofar += 1; break;
                case 2: sofar *= 10; sofar += 2; break;
                case 3: sofar *= 10; sofar += 3; break;
                case 4: sofar *= 100; sofar += 10; break;
                case 5: sofar *= 100; sofar += 11; break;
                case 6: sofar *= 100; sofar += 12; break;
                case 7: sofar *= 100; sofar += 13; break;
                case 8: sofar *= 100; sofar += 20; break;
                case 9: sofar *= 100; sofar += 21; break;
            }
            break;
        case 5:
            switch (digit) {
                case 0: sofar *= 10; break;
                case 1: sofar *= 10; sofar += 1; break;
                case 2: sofar *= 10; sofar += 2; break;
                case 3: sofar *= 10; sofar += 3; break;
                case 4: sofar *= 10; sofar += 4; break;
                case 5: sofar *= 100; sofar += 10; break;
                case 6: sofar *= 100; sofar += 11; break;
                case 7: sofar *= 100; sofar += 12; break;
                case 8: sofar *= 100; sofar += 13; break;
                case 9: sofar *= 100; sofar += 14; break;
            }
            break;
        case 6:
            switch (digit) {
                case 0: sofar *= 10; break;
                case 1: sofar *= 10; sofar += 1; break;
                case 2: sofar *= 10; sofar += 2; break;
                case 3: sofar *= 10; sofar += 3; break;
                case 4: sofar *= 10; sofar += 4; break;
                case 5: sofar *= 10; sofar += 5; break;
                case 6: sofar *= 100; sofar += 10; break;
                case 7: sofar *= 100; sofar += 11; break;
                case 8: sofar *= 100; sofar += 12; break;
                case 9: sofar *= 100; sofar += 13; break;
            }
            break;
        case 7:
            switch (digit) {
                case 0: sofar *= 10; break;
                case 1: sofar *= 10; sofar += 1; break;
                case 2: sofar *= 10; sofar += 2; break;
                case 3: sofar *= 10; sofar += 3; break;
                case 4: sofar *= 10; sofar += 4; break;
                case 5: sofar *= 10; sofar += 5; break;
                case 6: sofar *= 10; sofar += 6; break;
                case 7: sofar *= 100; sofar += 10; break;
                case 8: sofar *= 100; sofar += 11; break;
                case 9: sofar *= 100; sofar += 12; break;
            }
            break;
        case 8:
            switch (digit) {
                case 0: sofar *= 10; break;
                case 1: sofar *= 10; sofar += 1; break;
                case 2: sofar *= 10; sofar += 2; break;
                case 3: sofar *= 10; sofar += 3; break;
                case 4: sofar *= 10; sofar += 4; break;
                case 5: sofar *= 10; sofar += 5; break;
                case 6: sofar *= 10; sofar += 6; break;
                case 7: sofar *= 10; sofar += 7; break;
                case 8: sofar *= 100; sofar += 10; break;
                case 9: sofar *= 100; sofar += 11; break;
            }
            break;
        case 9:
            switch (digit) {
                case 0: sofar *= 10; break;
                case 1: sofar *= 10; sofar += 1; break;
                case 2: sofar *= 10; sofar += 2; break;
                case 3: sofar *= 10; sofar += 3; break;
                case 4: sofar *= 10; sofar += 4; break;
                case 5: sofar *= 10; sofar += 5; break;
                case 6: sofar *= 10; sofar += 6; break;
                case 7: sofar *= 10; sofar += 7; break;
                case 8: sofar *= 10; sofar += 8; break;
                case 9: sofar *= 100; sofar += 10; break;
            }
            break;
    };
}

vector<ull> crafty(ull start, ull stop) {
    cout_mtx.lock();
    cout << "Thread scanning from " << start << " to " << stop << endl;
    cout_mtx.unlock();
    vector<ull> res;

    auto prime_iter = primesieve::iterator(start);
    ull num;
    int prev, curr, next, fprev;
    int i, size;
    mpz_class left, right;
    unsigned long num_cpy;
    unsigned long* num_ptr;
    mpz_class num_mpz;


    while ((num = prime_iter.next_prime()) && num < stop) {
        ++prime_counter;
        left = 0;
        right = 0;
        size = floor(log10(num));
        i = pow(10, size);
        prev = num % 10;
        fprev = curr = num / i;
        if (i != 1) {
            i /= 10;
            next = (num / i) % 10;
        }
        else {
            next = prev;
        }
        for (size += 1; size; --size) {
            bases(prev, curr, left);
            bases(next, curr, right);
            prev = curr;
            curr = next;
            if (i > 1) {
                i /= 10;
                next = (num / i) % 10;
            }
            else {
                next = fprev;
            }
        }
        num_cpy = num;

        if (num != num_cpy) {
            num_ptr = (unsigned long *) &num;
            num_mpz = *num_ptr;
            num_mpz << sizeof(unsigned long) * 8;
            num_mpz += *(num_ptr + 1);
        }
        else {
            num_mpz = num_cpy;
        }
        if ((left % num_mpz == 0 && left / num_mpz >= 2) || (right % num_mpz == 0 && right / num_mpz >= 2)) {
            res.push_back(num);
        }
    }
    cout_mtx.lock();
    cout << "Thread scanning from " << start << " to " << stop << " is done." << endl;;
    cout << "Found " << res.size() << " crafty primes." << endl;
    cout_mtx.unlock();
    return res;
}

int main(int argc, char *argv[]) {
    ull start = 0, stop = 1000000000;
    int number_of_threads = 4;

    if (argc > 1) {
        start = atoll(argv[1]);
    }
    if (argc > 2) {
        stop = atoll(argv[2]);
    }
    if (argc > 3) {
        number_of_threads = atoi(argv[3]);
    }
    ull gap = stop - start;

    cout << "Start: " << ppnum(start) << ", stop: " << ppnum(stop) << endl;
    cout << "Scanning " << ppnum(gap) << " numbers" << endl;
    cout << "Number of threads: " << number_of_threads << endl;

    chrono::time_point<chrono::system_clock> tstart, tend;
    tstart = chrono::system_clock::now();

    cout << "Checking primes..." << endl;

    using ptask = packaged_task<decltype(crafty)>;
    using fur = future<vector<ull>>;

    vector<thread> threads;
    vector<fur> futures;
    for (int i = 0; i < number_of_threads; ++i) {
        auto p = ptask(crafty);
        futures.push_back(move(p.get_future()));
        auto tstop = (i + 1 == number_of_threads) ? (stop) : (start + gap / number_of_threads * (i + 1));
        threads.push_back(thread(move(p), start + gap / number_of_threads * i, tstop));
    }

    vector<ull> res;

    for (auto& thread : threads) {
        thread.join();
    }

    for (auto& fut : futures) {
        auto v = fut.get();
        res.insert(res.end(), v.begin(), v.end());
    }

    cout << "Finished checking primes..." << endl;

    tend = chrono::system_clock::now();
    chrono::duration<double> elapsed_seconds = tend - tstart;

    cout << "Number of tested primes: " << ppnum(prime_counter) << endl;
    cout << "Number of found crafty primes: " << res.size() << endl;
    cout << "Crafty primes are: ";
    for (auto iter = res.begin(); iter != res.end(); ++iter) {
        if (iter != res.begin())
            cout << ", ";
        cout << *iter;
    }
    cout << endl;
    cout << "Time taken: " << elapsed_seconds.count() << endl;
}

Production:

Start: 0 * 10^0, stop: 1.000000 * 10^11
Scanning 1.000000 * 10^11 numbers
Number of threads: 4
Checking primes...
Thread scanning from 25000000000 to 50000000000
Thread scanning from 0 to 25000000000
Thread scanning from 50000000000 to 75000000000
Thread scanning from 75000000000 to 100000000000
Thread scanning from 75000000000 to 100000000000 is done.
Found 0 crafty primes.
Thread scanning from 50000000000 to 75000000000 is done.
Found 0 crafty primes.
Thread scanning from 25000000000 to 50000000000 is done.
Found 0 crafty primes.
Thread scanning from 0 to 25000000000 is done.
Found 7 crafty primes.
Finished checking primes...
Number of tested primes: 4.118055 * 10^9
Number of found crafty primes: 7
Crafty primes are: 2, 5, 3449, 6287, 7589, 9397, 93557
Time taken: 2557.22

À num = 12919, le droit devrait être 120000000001000000000. Cela déborde d'un int 64 bits, et dans votre programme r = 9223372036854775807. Je pense que vous allez avoir besoin d'utiliser GMP ou quelque chose de similaire.
DanaJ

Très agréable. La synchronisation sur 3930K avec 12 fils est de 54 s pour 1e10 et 1e11 en 421s.
DanaJ

C'était une bonne excuse pour essayer les fonctionnalités simultanées de C ++ 11
matsjoyce

1

C, avec GMP, multithread (1e8 en 17s pour 1 fil)

Concept similaire au reste, avec probablement un peu d'optimisations ici et là.

Compiler: gcc -I/usr/local/include -Ofast crafty.c -pthread -L/usr/local/lib -lgmp && ./a.out

Veuillez donner votre puissance CPU. Je n'ai pas d'ordinateur rapide.
1e8 en 17 secondes avec 1 fil sur mon macbook air.

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <gmp.h>
#include <pthread.h>
#include <string.h>

#define THREAD_COUNT 1           // Number of threads
#define MAX_DIGITS   32768       // Maximum digits allocated for the string... some c stuff
#define MAX_NUMBER   "100000000" // Number in string format
#define START_INDEX  1           // Must be an odd number >= 1
#define GET_WRAP_INDEX(index, stringLength) index<0?stringLength+index:index>=stringLength?index-stringLength:index

static void huntCraftyPrime(int startIndex) {

    char lCS [MAX_DIGITS];
    char rCS [MAX_DIGITS];
    char tPS [MAX_DIGITS];

    mpz_t tP, lC, rC, max;
    mpz_init_set_ui(tP, startIndex);
    mpz_init(lC);
    mpz_init(rC);
    mpz_init_set_str(max, MAX_NUMBER, 10);

    int increment = THREAD_COUNT*2;

    if (START_INDEX < 9 && startIndex == START_INDEX) {
        printf("10 10 2\n\n");
        printf("10 10 5\n\n");
    }

    while (mpz_cmp(max, tP) > 0) {
        mpz_get_str(tPS, 10, tP);
        int tPSLength = strlen(tPS);
        int l = 0, r = 0, p = 0;
        while (p < tPSLength) {
            char lD = tPS[GET_WRAP_INDEX(p-1, tPSLength)];
            char d  = tPS[GET_WRAP_INDEX(p  , tPSLength)];
            char rD = tPS[GET_WRAP_INDEX(p+1, tPSLength)];
            if (d == '0') {
                if (lD != '1') lCS[l++] = '0';
                if (rD != '1') rCS[r++] = '0';
            } else if (d == '1') {
                lCS[l++] = (lD != '1') ? '1' : '0';
                rCS[r++] = (rD != '1') ? '1' : '0';
            } else if (d == '2') {
                if (lD == '1') {
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                } else if (lD == '2') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                } else {
                    lCS[l++] = '2';
                }
                if (rD == '1') {
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                } else if (rD == '2') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                } else {
                    rCS[r++] = '2';
                }
            } else if (d == '3') {
                if (lD == '1') {
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                } else if (lD == '2') {
                    lCS[l++] = '1';
                    lCS[l++] = '1';
                } else if (lD == '3') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                } else {
                    lCS[l++] = '3';
                }
                if (rD == '1') {
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                } else if (rD == '2') {
                    rCS[r++] = '1';
                    rCS[r++] = '1';
                } else if (rD == '3') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                } else {
                    rCS[r++] = '3';
                }
            } else if (d == '4') {
                if (lD == '1') {
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                } else if (lD == '2') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                } else if (lD == '3') {
                    lCS[l++] = '1';
                    lCS[l++] = '1';
                } else if (lD == '4') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                } else {
                    lCS[l++] = '4';
                }
                if (rD == '1') {
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                } else if (rD == '2') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                } else if (rD == '3') {
                    rCS[r++] = '1';
                    rCS[r++] = '1';
                } else if (rD == '4') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                } else {
                    rCS[r++] = '4';
                }
            } else if (d == '5') {
                if (lD == '1') {
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                } else if (lD == '2') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                    lCS[l++] = '1';
                } else if (lD == '3') {
                    lCS[l++] = '1';
                    lCS[l++] = '2';
                } else if (lD == '4') {
                    lCS[l++] = '1';
                    lCS[l++] = '1';
                } else if (lD == '5') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                } else {
                    lCS[l++] = '5';
                }
                if (rD == '1') {
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                } else if (rD == '2') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                    rCS[r++] = '1';
                } else if (rD == '3') {
                    rCS[r++] = '1';
                    rCS[r++] = '2';
                } else if (rD == '4') {
                    rCS[r++] = '1';
                    rCS[r++] = '1';
                } else if (rD == '5') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                } else {
                    rCS[r++] = '5';
                }
            } else if (d == '6') {
                if (lD == '1') {
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                } else if (lD == '2') {
                    lCS[l++] = '1';
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                } else if (lD == '3') {
                    lCS[l++] = '2';
                    lCS[l++] = '0';
                } else if (lD == '4') {
                    lCS[l++] = '1';
                    lCS[l++] = '2';
                } else if (lD == '5') {
                    lCS[l++] = '1';
                    lCS[l++] = '1';
                } else if (lD == '6') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                } else {
                    lCS[l++] = '6';
                }
                if (rD == '1') {
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                } else if (rD == '2') {
                    rCS[r++] = '1';
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                } else if (rD == '3') {
                    rCS[r++] = '2';
                    rCS[r++] = '0';
                } else if (rD == '4') {
                    rCS[r++] = '1';
                    rCS[r++] = '2';
                } else if (rD == '5') {
                    rCS[r++] = '1';
                    rCS[r++] = '1';
                } else if (rD == '6') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                } else {
                    rCS[r++] = '6';
                }
            } else if (d == '7') {
                if (lD == '1') {
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                } else if (lD == '2') {
                    lCS[l++] = '1';
                    lCS[l++] = '1';
                    lCS[l++] = '1';
                } else if (lD == '3') {
                    lCS[l++] = '2';
                    lCS[l++] = '1';
                } else if (lD == '4') {
                    lCS[l++] = '1';
                    lCS[l++] = '3';
                } else if (lD == '5') {
                    lCS[l++] = '1';
                    lCS[l++] = '2';
                } else if (lD == '6') {
                    lCS[l++] = '1';
                    lCS[l++] = '1';
                } else if (lD == '7') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                } else {
                    lCS[l++] = '7';
                }
                if (rD == '1') {
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                } else if (rD == '2') {
                    rCS[r++] = '1';
                    rCS[r++] = '1';
                    rCS[r++] = '1';
                } else if (rD == '3') {
                    rCS[r++] = '2';
                    rCS[r++] = '1';
                } else if (rD == '4') {
                    rCS[r++] = '1';
                    rCS[r++] = '3';
                } else if (rD == '5') {
                    rCS[r++] = '1';
                    rCS[r++] = '2';
                } else if (rD == '6') {
                    rCS[r++] = '1';
                    rCS[r++] = '1';
                } else if (rD == '7') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                } else {
                    rCS[r++] = '7';
                }
            } else if (d == '8') {
                if (lD == '1') {
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                } else if (lD == '2') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                } else if (lD == '3') {
                    lCS[l++] = '2';
                    lCS[l++] = '2';
                } else if (lD == '4') {
                    lCS[l++] = '2';
                    lCS[l++] = '0';
                } else if (lD == '5') {
                    lCS[l++] = '1';
                    lCS[l++] = '3';
                } else if (lD == '6') {
                    lCS[l++] = '1';
                    lCS[l++] = '2';
                } else if (lD == '7') {
                    lCS[l++] = '1';
                    lCS[l++] = '1';
                } else if (lD == '8') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                } else {
                    lCS[l++] = '8';
                }
                if (rD == '1') {
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                } else if (rD == '2') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                } else if (rD == '3') {
                    rCS[r++] = '2';
                    rCS[r++] = '2';
                } else if (rD == '4') {
                    rCS[r++] = '2';
                    rCS[r++] = '0';
                } else if (rD == '5') {
                    rCS[r++] = '1';
                    rCS[r++] = '3';
                } else if (rD == '6') {
                    rCS[r++] = '1';
                    rCS[r++] = '2';
                } else if (rD == '7') {
                    rCS[r++] = '1';
                    rCS[r++] = '1';
                } else if (rD == '8') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                } else {
                    rCS[r++] = '8';
                }
            } else if (d == '9') {
                if (lD == '1') {
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                } else if (lD == '2') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                    lCS[l++] = '1';
                } else if (lD == '3') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                    lCS[l++] = '0';
                } else if (lD == '4') {
                    lCS[l++] = '2';
                    lCS[l++] = '1';
                } else if (lD == '5') {
                    lCS[l++] = '1';
                    lCS[l++] = '4';
                } else if (lD == '6') {
                    lCS[l++] = '1';
                    lCS[l++] = '3';
                } else if (lD == '7') {
                    lCS[l++] = '1';
                    lCS[l++] = '2';
                } else if (lD == '8') {
                    lCS[l++] = '1';
                    lCS[l++] = '1';
                } else if (lD == '9') {
                    lCS[l++] = '1';
                    lCS[l++] = '0';
                } else {
                    lCS[l++] = '9';
                }
                if (rD == '1') {
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                } else if (rD == '2') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                    rCS[r++] = '1';
                } else if (rD == '3') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                    rCS[r++] = '0';
                } else if (rD == '4') {
                    rCS[r++] = '2';
                    rCS[r++] = '1';
                } else if (rD == '5') {
                    rCS[r++] = '1';
                    rCS[r++] = '4';
                } else if (rD == '6') {
                    rCS[r++] = '1';
                    rCS[r++] = '3';
                } else if (rD == '7') {
                    rCS[r++] = '1';
                    rCS[r++] = '2';
                } else if (rD == '8') {
                    rCS[r++] = '1';
                    rCS[r++] = '1';
                } else if (rD == '9') {
                    rCS[r++] = '1';
                    rCS[r++] = '0';
                } else {
                    rCS[r++] = '9';
                }
            }
            ++p;
        }
        lCS[l] = '\0';
        rCS[r] = '\0';

        mpz_set_str(lC, lCS, 10);
        mpz_set_str(rC, rCS, 10);

        if ((mpz_divisible_p(lC, tP) && mpz_cmp(lC, tP) > 0) || (mpz_divisible_p(rC, tP) && mpz_cmp(rC, tP) > 0)){
            if (mpz_millerrabin(tP, 25)) {
                gmp_printf("%Zd %Zd %Zd\n\n", lC, rC, tP);
            }
        }
        mpz_add_ui(tP, tP, increment);
    }
}

static void *huntCraftyPrimeThread(void *p) {
    int* startIndex = (int*) p;
    huntCraftyPrime(*startIndex);
    pthread_exit(NULL);
}

int main(int argc, char *argv[]) {

    struct timeval time_started, time_now, time_diff;
    gettimeofday(&time_started, NULL);

    int  startIndexes[THREAD_COUNT];
    pthread_t threads[THREAD_COUNT];

    int startIndex = START_INDEX;
    for (int i = 0; i < THREAD_COUNT; ++i) {
        for (;startIndex % 2 == 0; ++startIndex);
        startIndexes[i] = startIndex;
        int rc = pthread_create(&threads[i], NULL, huntCraftyPrimeThread, (void*)&startIndexes[i]); 
        if (rc) { 
            printf("ERROR; return code from pthread_create() is %d\n", rc);
            exit(-1);
        }
        ++startIndex;
    }

    for (int i = 0; i < THREAD_COUNT; ++i) {
        void * status;
        int rc = pthread_join(threads[i], &status);
        if (rc) {
            printf("ERROR: return code from pthread_join() is %d\n", rc);
            exit(-1);
        }
    }

    gettimeofday(&time_now, NULL);
    timersub(&time_now, &time_started, &time_diff);
    printf("Time taken,%ld.%.6d s\n", time_diff.tv_sec, time_diff.tv_usec);

    pthread_exit(NULL);
    return 0;
}

0

Python, trouve 93557 en 0,28s

Très similaire au code OP en ce qu'il utilise également pyprimes. Je l'ai écrit moi-même si xD

import pyprimes, time

d = time.clock()

def to_base(base, n):
    if base == 1:
        return '0'*n
    s = ""
    while n:
        s = str(n % base) + s
        n //= base
    return s

def crafty(n):
    digits = str(n)
    l, r = "", ""
    for i in range(len(digits)):
        t = int(digits[i])
        base = int(digits[i-1])
        l += to_base(base, t) if base else digits[i]
        base = int(digits[(i+1)%len(digits)])
        r += to_base(base, t) if base else digits[i]
    l, r = int(l) if l else 0, int(r) if r else 0
    if (l%n==0 and 2 <= l/n) or (r%n==0 and 2 <= r/n):
        print(n, l, r, time.clock()-d)

for i in pyprimes.primes_above(1):
    crafty(i)

Il affiche également le temps écoulé depuis le début où il trouve un nombre.

Production:

2 10 10 3.156656792490237e-05
5 10 10 0.0006756015452219958
3449 3111021 3104100 0.012881854420378145
6287 6210007 11021111 0.022036544076745254
7589 751311 125812 0.026288406792971432
9397 1231007 1003127 0.03185028207808106
93557 123121012 10031057 0.27897531840850603

Le format est number left right time. A titre de comparaison, le code OP trouve 93557 environ 0.37.

En utilisant notre site, vous reconnaissez avoir lu et compris notre politique liée aux cookies et notre politique de confidentialité.
Licensed under cc by-sa 3.0 with attribution required.